From 1fb9a5010f6a08936270c9c6d2ad1d748663d88f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Sa=C3=BAl=20Ibarra=20Corretg=C3=A9?= Date: Mon, 6 Nov 2023 23:07:31 +0100 Subject: [PATCH] Drop support for "use math" Ref: https://github.com/quickjs-ng/quickjs/issues/20 --- .gitignore | 2 - Makefile | 15 +- qjs.c | 34 +- qjscalc.js | 2657 ----------------------------------------- quickjs-opcode.h | 1 - quickjs.c | 464 +------ tests/test_qjscalc.js | 256 ---- 7 files changed, 49 insertions(+), 3380 deletions(-) delete mode 100644 qjscalc.js delete mode 100644 tests/test_qjscalc.js diff --git a/.gitignore b/.gitignore index 42ecd65..ea4286f 100644 --- a/.gitignore +++ b/.gitignore @@ -13,8 +13,6 @@ qjs qjs-debug qjs32 qjsc -qjscalc -qjscalc.c repl.c run-test262 run-test262-32 diff --git a/Makefile b/Makefile index cafd3fd..9db76c7 100644 --- a/Makefile +++ b/Makefile @@ -154,9 +154,6 @@ else QJSC_CC=$(CC) QJSC=./qjsc$(EXE) endif -ifndef CONFIG_WIN32 -PROGS+=qjscalc -endif ifdef CONFIG_M32 PROGS+=qjs32 qjs32_s endif @@ -186,7 +183,6 @@ QJS_LIB_OBJS=$(OBJDIR)/quickjs.o $(OBJDIR)/libregexp.o $(OBJDIR)/libunicode.o $( QJS_OBJS=$(OBJDIR)/qjs.o $(OBJDIR)/repl.o $(QJS_LIB_OBJS) ifdef CONFIG_BIGNUM QJS_LIB_OBJS+=$(OBJDIR)/libbf.o -QJS_OBJS+=$(OBJDIR)/qjscalc.o endif HOST_LIBS=-lm -ldl -lpthread @@ -232,9 +228,6 @@ qjs32_s: $(patsubst %.o, %.m32s.o, $(QJS_OBJS)) $(CC) -m32 $(LDFLAGS) -o $@ $^ $(LIBS) @size $@ -qjscalc: qjs - ln -sf $< $@ - ifdef CONFIG_LTO LTOEXT=.lto else @@ -252,9 +245,6 @@ endif # CONFIG_LTO repl.c: $(QJSC) repl.js $(QJSC) -c -o $@ -m repl.js -qjscalc.c: $(QJSC) qjscalc.js - $(QJSC) -fbignum -c -o $@ qjscalc.js - ifneq ($(wildcard unicode/UnicodeData.txt),) $(OBJDIR)/libunicode.o $(OBJDIR)/libunicode.m32.o $(OBJDIR)/libunicode.m32s.o \ $(OBJDIR)/libunicode.nolto.o: libunicode-table.h @@ -305,7 +295,7 @@ unicode_gen: $(OBJDIR)/unicode_gen.host.o $(OBJDIR)/cutils.host.o libunicode.c u $(HOST_CC) $(LDFLAGS) $(CFLAGS) -o $@ $(OBJDIR)/unicode_gen.host.o $(OBJDIR)/cutils.host.o clean: - rm -f repl.c qjscalc.c out.c + rm -f repl.c out.c rm -f *.a *.o *.d *~ unicode_gen regexp_test $(PROGS) rm -f hello.c test_fib.c rm -f examples/*.so tests/*.so @@ -316,7 +306,6 @@ install: all mkdir -p "$(DESTDIR)$(prefix)/bin" $(STRIP) qjs qjsc install -m755 qjs qjsc "$(DESTDIR)$(prefix)/bin" - ln -sf qjs "$(DESTDIR)$(prefix)/bin/qjscalc" mkdir -p "$(DESTDIR)$(prefix)/lib/quickjs" install -m644 libquickjs.a "$(DESTDIR)$(prefix)/lib/quickjs" ifdef CONFIG_LTO @@ -417,7 +406,6 @@ endif ifdef CONFIG_BIGNUM ./qjs --bignum tests/test_op_overloading.js ./qjs --bignum tests/test_bignum.js - ./qjs --qjscalc tests/test_qjscalc.js endif ifdef CONFIG_M32 ./qjs32 tests/test_closure.js @@ -429,7 +417,6 @@ ifdef CONFIG_M32 ifdef CONFIG_BIGNUM ./qjs32 --bignum tests/test_op_overloading.js ./qjs32 --bignum tests/test_bignum.js - ./qjs32 --qjscalc tests/test_qjscalc.js endif endif diff --git a/qjs.c b/qjs.c index c2d63e9..d395261 100644 --- a/qjs.c +++ b/qjs.c @@ -44,8 +44,6 @@ extern const uint8_t qjsc_repl[]; extern const uint32_t qjsc_repl_size; #ifdef CONFIG_BIGNUM -extern const uint8_t qjsc_qjscalc[]; -extern const uint32_t qjsc_qjscalc_size; static int bignum_ext; #endif @@ -293,7 +291,6 @@ void help(void) " --std make 'std' and 'os' available to the loaded script\n" #ifdef CONFIG_BIGNUM " --bignum enable the bignum extensions (BigFloat, BigDecimal)\n" - " --qjscalc load the QJSCalc runtime (default if invoked as qjscalc)\n" #endif "-T --trace trace memory allocation\n" "-d --dump dump the memory usage stats\n" @@ -321,23 +318,8 @@ int main(int argc, char **argv) size_t memory_limit = 0; char *include_list[32]; int i, include_count = 0; -#ifdef CONFIG_BIGNUM - int load_jscalc; -#endif size_t stack_size = 0; - -#ifdef CONFIG_BIGNUM - /* load jscalc runtime if invoked as 'qjscalc' */ - { - const char *p, *exename; - exename = argv[0]; - p = strrchr(exename, '/'); - if (p) - exename = p + 1; - load_jscalc = !strcmp(exename, "qjscalc"); - } -#endif - + /* cannot use getopt because we want to pass the command line to the script */ optind = 1; @@ -420,10 +402,6 @@ int main(int argc, char **argv) bignum_ext = 1; continue; } - if (!strcmp(longopt, "qjscalc")) { - load_jscalc = 1; - continue; - } #endif if (opt == 'q' || !strcmp(longopt, "quit")) { empty_run++; @@ -454,11 +432,6 @@ int main(int argc, char **argv) } } -#ifdef CONFIG_BIGNUM - if (load_jscalc) - bignum_ext = 1; -#endif - if (trace_memory) { js_trace_malloc_init(&trace_data); rt = JS_NewRuntime2(&trace_mf, &trace_data); @@ -490,11 +463,6 @@ int main(int argc, char **argv) } if (!empty_run) { -#ifdef CONFIG_BIGNUM - if (load_jscalc) { - js_std_eval_binary(ctx, qjsc_qjscalc, qjsc_qjscalc_size, 0); - } -#endif js_std_add_helpers(ctx, argc - optind, argv + optind); /* make 'std' and 'os' visible to non module code */ diff --git a/qjscalc.js b/qjscalc.js deleted file mode 100644 index b1ad1e8..0000000 --- a/qjscalc.js +++ /dev/null @@ -1,2657 +0,0 @@ -/* - * QuickJS Javascript Calculator - * - * Copyright (c) 2017-2020 Fabrice Bellard - * - * Permission is hereby granted, free of charge, to any person obtaining a copy - * of this software and associated documentation files (the "Software"), to deal - * in the Software without restriction, including without limitation the rights - * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell - * copies of the Software, and to permit persons to whom the Software is - * furnished to do so, subject to the following conditions: - * - * The above copyright notice and this permission notice shall be included in - * all copies or substantial portions of the Software. - * - * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR - * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, - * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER - * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN - * THE SOFTWARE. - */ -"use strict"; -"use math"; - -var Integer, Float, Fraction, Complex, Mod, Polynomial, PolyMod, RationalFunction, Series, Matrix; - -(function(global) { - global.Integer = global.BigInt; - global.Float = global.BigFloat; - global.algebraicMode = true; - - /* add non enumerable properties */ - function add_props(obj, props) { - var i, val, prop, tab, desc; - tab = Reflect.ownKeys(props); - for(i = 0; i < tab.length; i++) { - prop = tab[i]; - desc = Object.getOwnPropertyDescriptor(props, prop); - desc.enumerable = false; - if ("value" in desc) { - if (typeof desc.value !== "function") { - desc.writable = false; - desc.configurable = false; - } - } else { - /* getter/setter */ - desc.configurable = false; - } - Object.defineProperty(obj, prop, desc); - } - } - - /* same as proto[Symbol.operatorSet] = Operators.create(..op_list) - but allow shortcuts: left: [], right: [] or both - */ - function operators_set(proto, ...op_list) - { - var new_op_list, i, a, j, b, k, obj, tab; - var fields = [ "left", "right" ]; - new_op_list = []; - for(i = 0; i < op_list.length; i++) { - a = op_list[i]; - if (a.left || a.right) { - tab = [ a.left, a.right ]; - delete a.left; - delete a.right; - for(k = 0; k < 2; k++) { - obj = tab[k]; - if (obj) { - if (!Array.isArray(obj)) { - obj = [ obj ]; - } - for(j = 0; j < obj.length; j++) { - b = {}; - Object.assign(b, a); - b[fields[k]] = obj[j]; - new_op_list.push(b); - } - } - } - } else { - new_op_list.push(a); - } - } - proto[Symbol.operatorSet] = - Operators.create.call(null, ...new_op_list); - } - - /* Integer */ - - function generic_pow(a, b) { - var r, is_neg, i; - if (!Integer.isInteger(b)) { - return exp(log(a) * b); - } - if (Array.isArray(a) && !(a instanceof Polynomial || - a instanceof Series)) { - r = idn(Matrix.check_square(a)); - } else { - r = 1; - } - if (b == 0) - return r; - is_neg = false; - if (b < 0) { - is_neg = true; - b = -b; - } - r = a; - for(i = Integer.floorLog2(b) - 1; i >= 0; i--) { - r *= r; - if ((b >> i) & 1) - r *= a; - } - if (is_neg) { - if (typeof r.inverse != "function") - throw "negative powers are not supported for this type"; - r = r.inverse(); - } - return r; - } - - var small_primes = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499 ]; - - function miller_rabin_test(n, t) { - var d, r, s, i, j, a; - d = n - 1; - s = 0; - while ((d & 1) == 0) { - d >>= 1; - s++; - } - if (small_primes.length < t) - t = small_primes.length; - loop: for(j = 0; j < t; j++) { - a = small_primes[j]; - r = Integer.pmod(a, d, n); - if (r == 1 || r == (n - 1)) - continue; - for(i = 1; i < s; i++) { - r = (r * r) % n; - if (r == 1) - return false; - if (r == (n - 1)) - continue loop; - } - return false; /* n is composite */ - } - return true; /* n is probably prime with probability (1-0.5^t) */ - } - - function fact_rec(a, b) { /* assumes a <= b */ - var i, r; - if ((b - a) <= 5) { - r = a; - for(i = a + 1; i <= b; i++) - r *= i; - return r; - } else { - /* to avoid a quadratic running time it is better to - multiply numbers of similar size */ - i = (a + b) >> 1; - return fact_rec(a, i) * fact_rec(i + 1, b); - } - } - - /* math mode specific quirk to overload the integer division and power */ - Operators.updateBigIntOperators( - { - "/"(a, b) { - if (algebraicMode) { - return Fraction.toFraction(a, b); - } else { - return Float(a) / Float(b); - } - }, - "**"(a, b) { - if (algebraicMode) { - return generic_pow(a, b); - } else { - return Float(a) ** Float(b); - } - } - }); - - add_props(Integer, { - isInteger(a) { - /* integers are represented either as bigint or as number */ - return typeof a === "bigint" || - (typeof a === "number" && Number.isSafeInteger(a)); - }, - gcd(a, b) { - var r; - while (b != 0) { - r = a % b; - a = b; - b = r; - } - return a; - }, - fact(n) { - return n <= 0 ? 1 : fact_rec(1, n); - }, - /* binomial coefficient */ - comb(n, k) { - if (k < 0 || k > n) - return 0; - if (k > n - k) - k = n - k; - if (k == 0) - return 1; - return Integer.tdiv(fact_rec(n - k + 1, n), fact_rec(1, k)); - }, - /* inverse of x modulo y */ - invmod(x, y) { - var q, u, v, a, c, t; - u = x; - v = y; - c = 1; - a = 0; - while (u != 0) { - t = Integer.fdivrem(v, u); - q = t[0]; - v = u; - u = t[1]; - t = c; - c = a - q * c; - a = t; - } - /* v = gcd(x, y) */ - if (v != 1) - throw RangeError("not invertible"); - return a % y; - }, - /* return a ^ b modulo m */ - pmod(a, b, m) { - var r; - if (b == 0) - return 1; - if (b < 0) { - a = Integer.invmod(a, m); - b = -b; - } - r = 1; - for(;;) { - if (b & 1) { - r = (r * a) % m; - } - b >>= 1; - if (b == 0) - break; - a = (a * a) % m; - } - return r; - }, - - /* return true if n is prime (or probably prime with - probability 1-0.5^t) */ - isPrime(n, t) { - var i, d, n1; - if (!Integer.isInteger(n)) - throw TypeError("invalid type"); - if (n <= 1) - return false; - n1 = small_primes.length; - /* XXX: need Integer.sqrt() */ - for(i = 0; i < n1; i++) { - d = small_primes[i]; - if (d == n) - return true; - if (d > n) - return false; - if ((n % d) == 0) - return false; - } - if (n < d * d) - return true; - if (typeof t == "undefined") - t = 64; - return miller_rabin_test(n, t); - }, - nextPrime(n) { - if (!Integer.isInteger(n)) - throw TypeError("invalid type"); - if (n < 1) - n = 1; - for(;;) { - n++; - if (Integer.isPrime(n)) - return n; - } - }, - factor(n) { - var r, d; - if (!Integer.isInteger(n)) - throw TypeError("invalid type"); - r = []; - if (abs(n) <= 1) { - r.push(n); - return r; - } - if (n < 0) { - r.push(-1); - n = -n; - } - - while ((n % 2) == 0) { - n >>= 1; - r.push(2); - } - - d = 3; - while (n != 1) { - if (Integer.isPrime(n)) { - r.push(n); - break; - } - /* we are sure there is at least one divisor, so one test */ - for(;;) { - if ((n % d) == 0) - break; - d += 2; - } - for(;;) { - r.push(d); - n = Integer.tdiv(n, d); - if ((n % d) != 0) - break; - } - } - return r; - }, - }); - - add_props(Integer.prototype, { - inverse() { - return 1 / this; - }, - norm2() { - return this * this; - }, - abs() { - var v = this; - if (v < 0) - v = -v; - return v; - }, - conj() { - return this; - }, - arg() { - if (this >= 0) - return 0; - else - return Float.PI; - }, - exp() { - if (this == 0) - return 1; - else - return Float.exp(this); - }, - log() { - if (this == 1) - return 0; - else - return Float(this).log(); - }, - }); - - /* Fraction */ - - Fraction = function Fraction(a, b) - { - var d, r, obj; - - if (new.target) - throw TypeError("not a constructor"); - if (a instanceof Fraction) - return a; - if (!Integer.isInteger(a)) - throw TypeError("integer expected"); - if (typeof b === "undefined") { - b = 1; - } else { - if (!Integer.isInteger(b)) - throw TypeError("integer expected"); - if (b == 0) - throw RangeError("division by zero"); - d = Integer.gcd(a, b); - if (d != 1) { - a = Integer.tdiv(a, d); - b = Integer.tdiv(b, d); - } - - /* the fractions are normalized with den > 0 */ - if (b < 0) { - a = -a; - b = -b; - } - } - obj = Object.create(Fraction.prototype); - obj.num = a; - obj.den = b; - return obj; - } - - function fraction_add(a, b) { - a = Fraction(a); - b = Fraction(b); - return Fraction.toFraction(a.num * b.den + a.den * b.num, a.den * b.den); - } - function fraction_sub(a, b) { - a = Fraction(a); - b = Fraction(b); - return Fraction.toFraction(a.num * b.den - a.den * b.num, a.den * b.den); - } - function fraction_mul(a, b) { - a = Fraction(a); - b = Fraction(b); - return Fraction.toFraction(a.num * b.num, a.den * b.den); - } - function fraction_div(a, b) { - a = Fraction(a); - b = Fraction(b); - return Fraction.toFraction(a.num * b.den, a.den * b.num); - } - function fraction_mod(a, b) { - var a1 = Fraction(a); - var b1 = Fraction(b); - return a - Integer.ediv(a1.num * b1.den, a1.den * b1.num) * b; - } - function fraction_eq(a, b) { - a = Fraction(a); - b = Fraction(b); - /* we assume the fractions are normalized */ - return (a.num == b.num && a.den == b.den); - } - function fraction_lt(a, b) { - a = Fraction(a); - b = Fraction(b); - return (a.num * b.den < b.num * a.den); - } - - /* operators are needed for fractions */ - function float_add(a, b) { - return Float(a) + Float(b); - } - function float_sub(a, b) { - return Float(a) - Float(b); - } - function float_mul(a, b) { - return Float(a) * Float(b); - } - function float_div(a, b) { - return Float(a) / Float(b); - } - function float_mod(a, b) { - return Float(a) % Float(b); - } - function float_pow(a, b) { - return Float(a) ** Float(b); - } - function float_eq(a, b) { - /* XXX: may be better to use infinite precision for the comparison */ - return Float(a) === Float(b); - } - function float_lt(a, b) { - a = Float(a); - b = Float(b); - /* XXX: may be better to use infinite precision for the comparison */ - if (Float.isNaN(a) || Float.isNaN(b)) - return undefined; - else - return a < b; - } - - operators_set(Fraction.prototype, - { - "+": fraction_add, - "-": fraction_sub, - "*": fraction_mul, - "/": fraction_div, - "%": fraction_mod, - "**": generic_pow, - "==": fraction_eq, - "<": fraction_lt, - "pos"(a) { - return a; - }, - "neg"(a) { - return Fraction(-a.num, a.den); - }, - }, - { - left: [Number, BigInt], - right: [Number, BigInt], - "+": fraction_add, - "-": fraction_sub, - "*": fraction_mul, - "/": fraction_div, - "%": fraction_mod, - "**": generic_pow, - "==": fraction_eq, - "<": fraction_lt, - }, - { - left: Float, - right: Float, - "+": float_add, - "-": float_sub, - "*": float_mul, - "/": float_div, - "%": float_mod, - "**": float_pow, - "==": float_eq, - "<": float_lt, - }); - - add_props(Fraction, { - /* (internal use) simplify 'a' to an integer when possible */ - toFraction(a, b) { - var r = Fraction(a, b); - if (algebraicMode && r.den == 1) - return r.num; - else - return r; - }, - }); - - add_props(Fraction.prototype, { - [Symbol.toPrimitive](hint) { - if (hint === "string") { - return this.toString(); - } else { - return Float(this.num) / this.den; - } - }, - inverse() { - return Fraction(this.den, this.num); - }, - toString() { - return this.num + "/" + this.den; - }, - norm2() { - return this * this; - }, - abs() { - if (this.num < 0) - return -this; - else - return this; - }, - conj() { - return this; - }, - arg() { - if (this.num >= 0) - return 0; - else - return Float.PI; - }, - exp() { - return Float.exp(Float(this)); - }, - log() { - return Float(this).log(); - }, - }); - - /* Number (Float64) */ - - add_props(Number.prototype, { - inverse() { - return 1 / this; - }, - norm2() { - return this * this; - }, - abs() { - return Math.abs(this); - }, - conj() { - return this; - }, - arg() { - if (this >= 0) - return 0; - else - return Float.PI; - }, - exp() { - return Float.exp(this); - }, - log() { - if (this < 0) { - return Complex(this).log(); - } else { - return Float.log(this); - } - }, - }); - - /* Float */ - - var const_tab = []; - - /* we cache the constants for small precisions */ - function get_const(n) { - var t, c, p; - t = const_tab[n]; - p = BigFloatEnv.prec; - if (t && t.prec == p) { - return t.val; - } else { - switch(n) { - case 0: c = Float.exp(1); break; - case 1: c = Float.log(10); break; -// case 2: c = Float.log(2); break; - case 3: c = 1/Float.log(2); break; - case 4: c = 1/Float.log(10); break; -// case 5: c = Float.atan(1) * 4; break; - case 6: c = Float.sqrt(0.5); break; - case 7: c = Float.sqrt(2); break; - } - if (p <= 1024) { - const_tab[n] = { prec: p, val: c }; - } - return c; - } - } - - add_props(Float, { - isFloat(a) { - return typeof a === "number" || typeof a === "bigfloat"; - }, - bestappr(u, b) { - var num1, num0, den1, den0, u, num, den, n; - - if (typeof b === "undefined") - throw TypeError("second argument expected"); - num1 = 1; - num0 = 0; - den1 = 0; - den0 = 1; - for(;;) { - n = Integer(Float.floor(u)); - num = n * num1 + num0; - den = n * den1 + den0; - if (den > b) - break; - u = 1.0 / (u - n); - num0 = num1; - num1 = num; - den0 = den1; - den1 = den; - } - return Fraction(num1, den1); - }, - /* similar constants as Math.x */ - get E() { return get_const(0); }, - get LN10() { return get_const(1); }, -// get LN2() { return get_const(2); }, - get LOG2E() { return get_const(3); }, - get LOG10E() { return get_const(4); }, -// get PI() { return get_const(5); }, - get SQRT1_2() { return get_const(6); }, - get SQRT2() { return get_const(7); }, - }); - - add_props(Float.prototype, { - inverse() { - return 1.0 / this; - }, - norm2() { - return this * this; - }, - abs() { - return Float.abs(this); - }, - conj() { - return this; - }, - arg() { - if (this >= 0) - return 0; - else - return Float.PI; - }, - exp() { - return Float.exp(this); - }, - log() { - if (this < 0) { - return Complex(this).log(); - } else { - return Float.log(this); - } - }, - }); - - /* Complex */ - - Complex = function Complex(re, im) - { - var obj; - if (new.target) - throw TypeError("not a constructor"); - if (re instanceof Complex) - return re; - if (typeof im === "undefined") { - im = 0; - } - obj = Object.create(Complex.prototype); - obj.re = re; - obj.im = im; - return obj; - } - - - function complex_add(a, b) { - a = Complex(a); - b = Complex(b); - return Complex.toComplex(a.re + b.re, a.im + b.im); - } - function complex_sub(a, b) { - a = Complex(a); - b = Complex(b); - return Complex.toComplex(a.re - b.re, a.im - b.im); - } - function complex_mul(a, b) { - a = Complex(a); - b = Complex(b); - return Complex.toComplex(a.re * b.re - a.im * b.im, - a.re * b.im + a.im * b.re); - } - function complex_div(a, b) { - a = Complex(a); - b = Complex(b); - return a * b.inverse(); - } - function complex_eq(a, b) { - a = Complex(a); - b = Complex(b); - return a.re == b.re && a.im == b.im; - } - - operators_set(Complex.prototype, - { - "+": complex_add, - "-": complex_sub, - "*": complex_mul, - "/": complex_div, - "**": generic_pow, - "==": complex_eq, - "pos"(a) { - return a; - }, - "neg"(a) { - return Complex(-a.re, -a.im); - } - }, - { - left: [Number, BigInt, Float, Fraction], - right: [Number, BigInt, Float, Fraction], - "+": complex_add, - "-": complex_sub, - "*": complex_mul, - "/": complex_div, - "**": generic_pow, - "==": complex_eq, - }); - - add_props(Complex, { - /* simplify to real number when possible */ - toComplex(re, im) { - if (algebraicMode && im == 0) - return re; - else - return Complex(re, im); - }, - }); - - add_props(Complex.prototype, { - inverse() { - var c = this.norm2(); - return Complex(this.re / c, -this.im / c); - }, - toString() { - var v, s = "", a = this; - if (a.re != 0) - s += a.re.toString(); - if (a.im == 1) { - if (s != "") - s += "+"; - s += "I"; - } else if (a.im == -1) { - s += "-I"; - } else { - v = a.im.toString(); - if (v[0] != "-" && s != "") - s += "+"; - s += v + "*I"; - } - return s; - }, - norm2() { - return this.re * this.re + this.im * this.im; - }, - abs() { - return Float.sqrt(norm2(this)); - }, - conj() { - return Complex(this.re, -this.im); - }, - arg() { - return Float.atan2(this.im, this.re); - }, - exp() { - var arg = this.im, r = this.re.exp(); - return Complex(r * cos(arg), r * sin(arg)); - }, - log() { - return Complex(abs(this).log(), atan2(this.im, this.re)); - }, - }); - - /* Mod */ - - Mod = function Mod(a, m) { - var obj, t; - if (new.target) - throw TypeError("not a constructor"); - obj = Object.create(Mod.prototype); - if (Integer.isInteger(m)) { - if (m <= 0) - throw RangeError("the modulo cannot be <= 0"); - if (Integer.isInteger(a)) { - a %= m; - } else if (a instanceof Fraction) { - return Mod(a.num, m) / a.den; - } else { - throw TypeError("invalid types"); - } - } else { - throw TypeError("invalid types"); - } - obj.res = a; - obj.mod = m; - return obj; - }; - - function mod_add(a, b) { - if (!(a instanceof Mod)) { - return Mod(a + b.res, b.mod); - } else if (!(b instanceof Mod)) { - return Mod(a.res + b, a.mod); - } else { - if (a.mod != b.mod) - throw TypeError("different modulo for binary operator"); - return Mod(a.res + b.res, a.mod); - } - } - function mod_sub(a, b) { - if (!(a instanceof Mod)) { - return Mod(a - b.res, b.mod); - } else if (!(b instanceof Mod)) { - return Mod(a.res - b, a.mod); - } else { - if (a.mod != b.mod) - throw TypeError("different modulo for binary operator"); - return Mod(a.res - b.res, a.mod); - } - } - function mod_mul(a, b) { - if (!(a instanceof Mod)) { - return Mod(a * b.res, b.mod); - } else if (!(b instanceof Mod)) { - return Mod(a.res * b, a.mod); - } else { - if (a.mod != b.mod) - throw TypeError("different modulo for binary operator"); - return Mod(a.res * b.res, a.mod); - } - } - function mod_div(a, b) { - if (!(b instanceof Mod)) - b = Mod(b, a.mod); - return mod_mul(a, b.inverse()); - } - function mod_eq(a, b) { - return (a.mod == b.mod && a.res == b.res); - } - - operators_set(Mod.prototype, - { - "+": mod_add, - "-": mod_sub, - "*": mod_mul, - "/": mod_div, - "**": generic_pow, - "==": mod_eq, - "pos"(a) { - return a; - }, - "neg"(a) { - return Mod(-a.res, a.mod); - } - }, - { - left: [Number, BigInt, Float, Fraction], - right: [Number, BigInt, Float, Fraction], - "+": mod_add, - "-": mod_sub, - "*": mod_mul, - "/": mod_div, - "**": generic_pow, - }); - - add_props(Mod.prototype, { - inverse() { - var a = this, m = a.mod; - if (Integer.isInteger(m)) { - return Mod(Integer.invmod(a.res, m), m); - } else { - throw TypeError("unsupported type"); - } - }, - toString() { - return "Mod(" + this.res + "," + this.mod + ")"; - }, - }); - - /* Polynomial */ - - function polynomial_is_scalar(a) - { - if (typeof a === "number" || - typeof a === "bigint" || - typeof a === "bigfloat") - return true; - if (a instanceof Fraction || - a instanceof Complex || - a instanceof Mod) - return true; - return false; - } - - Polynomial = function Polynomial(a) - { - if (new.target) - throw TypeError("not a constructor"); - if (a instanceof Polynomial) { - return a; - } else if (Array.isArray(a)) { - if (a.length == 0) - a = [ 0 ]; - Object.setPrototypeOf(a, Polynomial.prototype); - return a.trim(); - } else if (polynomial_is_scalar(a)) { - a = [a]; - Object.setPrototypeOf(a, Polynomial.prototype); - return a; - } else { - throw TypeError("invalid type"); - } - } - - function number_need_paren(c) - { - return !(Integer.isInteger(c) || - Float.isFloat(c) || - c instanceof Fraction || - (c instanceof Complex && c.re == 0)); - } - - /* string for c*X^i */ - function monomial_toString(c, i) - { - var str1; - if (i == 0) { - str1 = c.toString(); - } else { - if (c == 1) { - str1 = ""; - } else if (c == -1) { - str1 = "-"; - } else { - if (number_need_paren(c)) { - str1 = "(" + c + ")"; - } else { - str1 = String(c); - } - str1 += "*"; - } - str1 += "X"; - if (i != 1) { - str1 += "^" + i; - } - } - return str1; - } - - /* find one complex root of 'p' starting from z at precision eps using - at most max_it iterations. Return null if could not find root. */ - function poly_root_laguerre1(p, z, max_it) - { - var p1, p2, i, z0, z1, z2, d, t0, t1, d1, d2, e, el, zl; - - d = p.deg(); - if (d == 1) { - /* monomial case */ - return -p[0] / p[1]; - } - /* trivial zero */ - if (p[0] == 0) - return 0.0; - - p1 = p.deriv(); - p2 = p1.deriv(); - el = 0.0; - zl = 0.0; - for(i = 0; i < max_it; i++) { - z0 = p.apply(z); - if (z0 == 0) - return z; /* simple exit case */ - - /* Ward stopping criteria */ - e = abs(z - zl); -// print("e", i, e); - if (i >= 2 && e >= el) { - if (abs(zl) < 1e-4) { - if (e < 1e-7) - return zl; - } else { - if (e < abs(zl) * 1e-3) - return zl; - } - } - el = e; - zl = z; - - z1 = p1.apply(z); - z2 = p2.apply(z); - t0 = (d - 1) * z1; - t0 = t0 * t0; - t1 = d * (d - 1) * z0 * z2; - t0 = sqrt(t0 - t1); - d1 = z1 + t0; - d2 = z1 - t0; - if (norm2(d2) > norm2(d1)) - d1 = d2; - if (d1 == 0) - return null; - z = z - d * z0 / d1; - } - return null; - } - - function poly_roots(p) - { - var d, i, roots, j, z, eps; - var start_points = [ 0.1, -1.4, 1.7 ]; - - if (!(p instanceof Polynomial)) - throw TypeError("polynomial expected"); - d = p.deg(); - if (d <= 0) - return []; - eps = 2.0 ^ (-BigFloatEnv.prec); - roots = []; - for(i = 0; i < d; i++) { - /* XXX: should select another start point if error */ - for(j = 0; j < 3; j++) { - z = poly_root_laguerre1(p, start_points[j], 100); - if (z !== null) - break; - } - if (j == 3) - throw RangeError("error in root finding algorithm"); - roots[i] = z; - p = Polynomial.divrem(p, X - z)[0]; - } - return roots; - } - - add_props(Polynomial.prototype, { - trim() { - var a = this, i; - i = a.length; - while (i > 1 && a[i - 1] == 0) - i--; - a.length = i; - return a; - }, - conj() { - var r, i, n, a; - a = this; - n = a.length; - r = []; - for(i = 0; i < n; i++) - r[i] = a[i].conj(); - return Polynomial(r); - }, - inverse() { - return RationalFunction(Polynomial([1]), this); - }, - toString() { - var i, str, str1, c, a = this; - if (a.length == 1) { - return a[0].toString(); - } - str=""; - for(i = a.length - 1; i >= 0; i--) { - c = a[i]; - if (c == 0 || - (c instanceof Mod) && c.res == 0) - continue; - str1 = monomial_toString(c, i); - if (str1[0] != "-") { - if (str != "") - str += "+"; - } - str += str1; - } - return str; - }, - deg() { - if (this.length == 1 && this[0] == 0) - return -Infinity; - else - return this.length - 1; - }, - apply(b) { - var i, n, r, a = this; - n = a.length - 1; - r = a[n]; - while (n > 0) { - n--; - r = r * b + a[n]; - } - return r; - }, - deriv() { - var a = this, n, r, i; - n = a.length; - if (n == 1) { - return Polynomial(0); - } else { - r = []; - for(i = 1; i < n; i++) { - r[i - 1] = i * a[i]; - } - return Polynomial(r); - } - }, - integ() { - var a = this, n, r, i; - n = a.length; - r = [0]; - for(i = 0; i < n; i++) { - r[i + 1] = a[i] / (i + 1); - } - return Polynomial(r); - }, - norm2() { - var a = this, n, r, i; - n = a.length; - r = 0; - for(i = 0; i < n; i++) { - r += a[i].norm2(); - } - return r; - }, - }); - - - function polynomial_add(a, b) { - var tmp, r, i, n1, n2; - a = Polynomial(a); - b = Polynomial(b); - if (a.length < b.length) { - tmp = a; - a = b; - b = tmp; - } - n1 = b.length; - n2 = a.length; - r = []; - for(i = 0; i < n1; i++) - r[i] = a[i] + b[i]; - for(i = n1; i < n2; i++) - r[i] = a[i]; - return Polynomial(r); - } - function polynomial_sub(a, b) { - return polynomial_add(a, -b); - } - function polynomial_mul(a, b) { - var i, j, n1, n2, n, r; - a = Polynomial(a); - b = Polynomial(b); - n1 = a.length; - n2 = b.length; - n = n1 + n2 - 1; - r = []; - for(i = 0; i < n; i++) - r[i] = 0; - for(i = 0; i < n1; i++) { - for(j = 0; j < n2; j++) { - r[i + j] += a[i] * b[j]; - } - } - return Polynomial(r); - } - function polynomial_div_scalar(a, b) { - return a * (1 / b); - } - function polynomial_div(a, b) - { - return RationalFunction(Polynomial(a), - Polynomial(b)); - } - function polynomial_mod(a, b) { - return Polynomial.divrem(a, b)[1]; - } - function polynomial_eq(a, b) { - var n, i; - n = a.length; - if (n != b.length) - return false; - for(i = 0; i < n; i++) { - if (a[i] != b[i]) - return false; - } - return true; - } - - operators_set(Polynomial.prototype, - { - "+": polynomial_add, - "-": polynomial_sub, - "*": polynomial_mul, - "/": polynomial_div, - "**": generic_pow, - "==": polynomial_eq, - "pos"(a) { - return a; - }, - "neg"(a) { - var r, i, n, a; - n = a.length; - r = []; - for(i = 0; i < n; i++) - r[i] = -a[i]; - return Polynomial(r); - }, - }, - { - left: [Number, BigInt, Float, Fraction, Complex, Mod], - "+": polynomial_add, - "-": polynomial_sub, - "*": polynomial_mul, - "/": polynomial_div, - "**": generic_pow, /* XXX: only for integer */ - }, - { - right: [Number, BigInt, Float, Fraction, Complex, Mod], - "+": polynomial_add, - "-": polynomial_sub, - "*": polynomial_mul, - "/": polynomial_div_scalar, - "**": generic_pow, /* XXX: only for integer */ - }); - - add_props(Polynomial, { - divrem(a, b) { - var n1, n2, i, j, q, r, n, c; - if (b.deg() < 0) - throw RangeError("division by zero"); - n1 = a.length; - n2 = b.length; - if (n1 < n2) - return [Polynomial([0]), a]; - r = Array.prototype.dup.call(a); - q = []; - n2--; - n = n1 - n2; - for(i = 0; i < n; i++) - q[i] = 0; - for(i = n - 1; i >= 0; i--) { - c = r[i + n2]; - if (c != 0) { - c = c / b[n2]; - r[i + n2] = 0; - for(j = 0; j < n2; j++) { - r[i + j] -= b[j] * c; - } - q[i] = c; - } - } - return [Polynomial(q), Polynomial(r)]; - }, - gcd(a, b) { - var t; - while (b.deg() >= 0) { - t = Polynomial.divrem(a, b); - a = b; - b = t[1]; - } - /* convert to monic form */ - return a / a[a.length - 1]; - }, - invmod(x, y) { - var q, u, v, a, c, t; - u = x; - v = y; - c = Polynomial([1]); - a = Polynomial([0]); - while (u.deg() >= 0) { - t = Polynomial.divrem(v, u); - q = t[0]; - v = u; - u = t[1]; - t = c; - c = a - q * c; - a = t; - } - /* v = gcd(x, y) */ - if (v.deg() > 0) - throw RangeError("not invertible"); - return Polynomial.divrem(a, y)[1]; - }, - roots(p) { - return poly_roots(p); - } - }); - - /* Polynomial Modulo Q */ - - PolyMod = function PolyMod(a, m) { - var obj, t; - if (new.target) - throw TypeError("not a constructor"); - obj = Object.create(PolyMod.prototype); - if (m instanceof Polynomial) { - if (m.deg() <= 0) - throw RangeError("the modulo cannot have a degree <= 0"); - if (a instanceof RationalFunction) { - return PolyMod(a.num, m) / a.den; - } else { - a = Polynomial(a); - t = Polynomial.divrem(a, m); - a = t[1]; - } - } else { - throw TypeError("invalid types"); - } - obj.res = a; - obj.mod = m; - return obj; - }; - - function polymod_add(a, b) { - if (!(a instanceof PolyMod)) { - return PolyMod(a + b.res, b.mod); - } else if (!(b instanceof PolyMod)) { - return PolyMod(a.res + b, a.mod); - } else { - if (a.mod != b.mod) - throw TypeError("different modulo for binary operator"); - return PolyMod(a.res + b.res, a.mod); - } - } - function polymod_sub(a, b) { - return polymod_add(a, -b); - } - function polymod_mul(a, b) { - if (!(a instanceof PolyMod)) { - return PolyMod(a * b.res, b.mod); - } else if (!(b instanceof PolyMod)) { - return PolyMod(a.res * b, a.mod); - } else { - if (a.mod != b.mod) - throw TypeError("different modulo for binary operator"); - return PolyMod(a.res * b.res, a.mod); - } - } - function polymod_div(a, b) { - if (!(b instanceof PolyMod)) - b = PolyMod(b, a.mod); - return polymod_mul(a, b.inverse()); - } - function polymod_eq(a, b) { - return (a.mod == b.mod && a.res == b.res); - } - - operators_set(PolyMod.prototype, - { - "+": polymod_add, - "-": polymod_sub, - "*": polymod_mul, - "/": polymod_div, - "**": generic_pow, - "==": polymod_eq, - "pos"(a) { - return a; - }, - "neg"(a) { - return PolyMod(-a.res, a.mod); - }, - }, - { - left: [Number, BigInt, Float, Fraction, Complex, Mod, Polynomial], - right: [Number, BigInt, Float, Fraction, Complex, Mod, Polynomial], - "+": polymod_add, - "-": polymod_sub, - "*": polymod_mul, - "/": polymod_div, - "**": generic_pow, /* XXX: only for integer */ - }); - - add_props(PolyMod.prototype, { - inverse() { - var a = this, m = a.mod; - if (m instanceof Polynomial) { - return PolyMod(Polynomial.invmod(a.res, m), m); - } else { - throw TypeError("unsupported type"); - } - }, - toString() { - return "PolyMod(" + this.res + "," + this.mod + ")"; - }, - }); - - /* Rational function */ - - RationalFunction = function RationalFunction(a, b) - { - var t, r, d, obj; - if (new.target) - throw TypeError("not a constructor"); - if (!(a instanceof Polynomial) || - !(b instanceof Polynomial)) - throw TypeError("polynomial expected"); - t = Polynomial.divrem(a, b); - r = t[1]; - if (r.deg() < 0) - return t[0]; /* no need for a fraction */ - d = Polynomial.gcd(b, r); - if (d.deg() > 0) { - a = Polynomial.divrem(a, d)[0]; - b = Polynomial.divrem(b, d)[0]; - } - obj = Object.create(RationalFunction.prototype); - obj.num = a; - obj.den = b; - return obj; - } - - add_props(RationalFunction.prototype, { - inverse() { - return RationalFunction(this.den, this.num); - }, - conj() { - return RationalFunction(this.num.conj(), this.den.conj()); - }, - toString() { - var str; - if (this.num.deg() <= 0 && - !number_need_paren(this.num[0])) - str = this.num.toString(); - else - str = "(" + this.num.toString() + ")"; - str += "/(" + this.den.toString() + ")" - return str; - }, - apply(b) { - return this.num.apply(b) / this.den.apply(b); - }, - deriv() { - var n = this.num, d = this.den; - return RationalFunction(n.deriv() * d - n * d.deriv(), d * d); - }, - }); - - function ratfunc_add(a, b) { - a = RationalFunction.toRationalFunction(a); - b = RationalFunction.toRationalFunction(b); - return RationalFunction(a.num * b.den + a.den * b.num, a.den * b.den); - } - function ratfunc_sub(a, b) { - a = RationalFunction.toRationalFunction(a); - b = RationalFunction.toRationalFunction(b); - return RationalFunction(a.num * b.den - a.den * b.num, a.den * b.den); - } - function ratfunc_mul(a, b) { - a = RationalFunction.toRationalFunction(a); - b = RationalFunction.toRationalFunction(b); - return RationalFunction(a.num * b.num, a.den * b.den); - } - function ratfunc_div(a, b) { - a = RationalFunction.toRationalFunction(a); - b = RationalFunction.toRationalFunction(b); - return RationalFunction(a.num * b.den, a.den * b.num); - } - function ratfunc_eq(a, b) { - a = RationalFunction.toRationalFunction(a); - b = RationalFunction.toRationalFunction(b); - /* we assume the fractions are normalized */ - return (a.num == b.num && a.den == b.den); - } - - operators_set(RationalFunction.prototype, - { - "+": ratfunc_add, - "-": ratfunc_sub, - "*": ratfunc_mul, - "/": ratfunc_div, - "**": generic_pow, - "==": ratfunc_eq, - "pos"(a) { - return a; - }, - "neg"(a) { - return RationalFunction(-this.num, this.den); - }, - }, - { - left: [Number, BigInt, Float, Fraction, Complex, Mod, Polynomial], - right: [Number, BigInt, Float, Fraction, Complex, Mod, Polynomial], - "+": ratfunc_add, - "-": ratfunc_sub, - "*": ratfunc_mul, - "/": ratfunc_div, - "**": generic_pow, /* should only be used with integers */ - }); - - add_props(RationalFunction, { - /* This function always return a RationalFunction object even - if it could simplified to a polynomial, so it is not - equivalent to RationalFunction(a) */ - toRationalFunction(a) { - var obj; - if (a instanceof RationalFunction) { - return a; - } else { - obj = Object.create(RationalFunction.prototype); - obj.num = Polynomial(a); - obj.den = Polynomial(1); - return obj; - } - }, - }); - - /* Power series */ - - /* 'a' is an array */ - function get_emin(a) { - var i, n; - n = a.length; - for(i = 0; i < n; i++) { - if (a[i] != 0) - return i; - } - return n; - }; - - function series_is_scalar_or_polynomial(a) - { - return polynomial_is_scalar(a) || - (a instanceof Polynomial); - } - - /* n is the maximum number of terms if 'a' is not a serie */ - Series = function Series(a, n) { - var emin, r, i; - - if (a instanceof Series) { - return a; - } else if (series_is_scalar_or_polynomial(a)) { - if (n <= 0) { - /* XXX: should still use the polynomial degree */ - return Series.zero(0, 0); - } else { - a = Polynomial(a); - emin = get_emin(a); - r = Series.zero(n, emin); - n = Math.min(a.length - emin, n); - for(i = 0; i < n; i++) - r[i] = a[i + emin]; - return r; - } - } else if (a instanceof RationalFunction) { - return Series(a.num, n) / a.den; - } else { - throw TypeError("invalid type"); - } - }; - - function series_add(v1, v2) { - var tmp, d, emin, n, r, i, j, v2_emin, c1, c2; - if (!(v1 instanceof Series)) { - tmp = v1; - v1 = v2; - v2 = tmp; - } - d = v1.emin + v1.length; - if (series_is_scalar_or_polynomial(v2)) { - v2 = Polynomial(v2); - if (d <= 0) - return v1; - v2_emin = 0; - } else if (v2 instanceof RationalFunction) { - /* compute the emin of the rational fonction */ - i = get_emin(v2.num) - get_emin(v2.den); - if (d <= i) - return v1; - /* compute the serie with the required terms */ - v2 = Series(v2, d - i); - v2_emin = v2.emin; - } else { - v2_emin = v2.emin; - d = Math.min(d, v2_emin + v2.length); - } - emin = Math.min(v1.emin, v2_emin); - n = d - emin; - r = Series.zero(n, emin); - /* XXX: slow */ - for(i = emin; i < d; i++) { - j = i - v1.emin; - if (j >= 0 && j < v1.length) - c1 = v1[j]; - else - c1 = 0; - j = i - v2_emin; - if (j >= 0 && j < v2.length) - c2 = v2[j]; - else - c2 = 0; - r[i - emin] = c1 + c2; - } - return r.trim(); - } - function series_sub(a, b) { - return series_add(a, -b); - } - function series_mul(v1, v2) { - var n, i, j, r, n, emin, n1, n2, k; - if (!(v1 instanceof Series)) - v1 = Series(v1, v2.length); - else if (!(v2 instanceof Series)) - v2 = Series(v2, v1.length); - emin = v1.emin + v2.emin; - n = Math.min(v1.length, v2.length); - n1 = v1.length; - n2 = v2.length; - r = Series.zero(n, emin); - for(i = 0; i < n1; i++) { - k = Math.min(n2, n - i); - for(j = 0; j < k; j++) { - r[i + j] += v1[i] * v2[j]; - } - } - return r.trim(); - } - function series_div(v1, v2) { - if (!(v2 instanceof Series)) - v2 = Series(v2, v1.length); - return series_mul(v1, v2.inverse()); - } - function series_pow(a, b) { - if (Integer.isInteger(b)) { - return generic_pow(a, b); - } else { - if (!(a instanceof Series)) - a = Series(a, b.length); - return exp(log(a) * b); - } - } - function series_eq(a, b) { - var n, i; - if (a.emin != b.emin) - return false; - n = a.length; - if (n != b.length) - return false; - for(i = 0; i < n; i++) { - if (a[i] != b[i]) - return false; - } - return true; - } - - operators_set(Series.prototype, - { - "+": series_add, - "-": series_sub, - "*": series_mul, - "/": series_div, - "**": series_pow, - "==": series_eq, - "pos"(a) { - return a; - }, - "neg"(a) { - var obj, n, i; - n = a.length; - obj = Series.zero(a.length, a.emin); - for(i = 0; i < n; i++) { - obj[i] = -a[i]; - } - return obj; - }, - }, - { - left: [Number, BigInt, Float, Fraction, Complex, Mod, Polynomial], - right: [Number, BigInt, Float, Fraction, Complex, Mod, Polynomial], - "+": series_add, - "-": series_sub, - "*": series_mul, - "/": series_div, - "**": series_pow, - }); - - add_props(Series.prototype, { - conj() { - var obj, n, i; - n = this.length; - obj = Series.zero(this.length, this.emin); - for(i = 0; i < n; i++) { - obj[i] = this[i].conj(); - } - return obj; - }, - inverse() { - var r, n, i, j, sum, v1 = this; - n = v1.length; - if (n == 0) - throw RangeError("division by zero"); - r = Series.zero(n, -v1.emin); - r[0] = 1 / v1[0]; - for(i = 1; i < n; i++) { - sum = 0; - for(j = 1; j <= i; j++) { - sum += v1[j] * r[i - j]; - } - r[i] = -sum * r[0]; - } - return r; - }, - /* remove leading zero terms */ - trim() { - var i, j, n, r, v1 = this; - n = v1.length; - i = 0; - while (i < n && v1[i] == 0) - i++; - if (i == 0) - return v1; - for(j = i; j < n; j++) - v1[j - i] = v1[j]; - v1.length = n - i; - v1.__proto__.emin += i; - return v1; - }, - toString() { - var i, j, str, str1, c, a = this, emin, n; - str=""; - emin = this.emin; - n = this.length; - for(j = 0; j < n; j++) { - i = j + emin; - c = a[j]; - if (c != 0) { - str1 = monomial_toString(c, i); - if (str1[0] != "-") { - if (str != "") - str += "+"; - } - str += str1; - } - } - if (str != "") - str += "+"; - str += "O(" + monomial_toString(1, n + emin) + ")"; - return str; - }, - apply(b) { - var i, n, r, a = this; - n = a.length; - if (n == 0) - return 0; - r = a[--n]; - while (n > 0) { - n--; - r = r * b + a[n]; - } - if (a.emin != 0) - r *= b ^ a.emin; - return r; - }, - deriv() { - var a = this, n = a.length, emin = a.emin, r, i, j; - if (n == 0 && emin == 0) { - return Series.zero(0, 0); - } else { - r = Series.zero(n, emin - 1); - for(i = 0; i < n; i++) { - j = emin + i; - if (j == 0) - r[i] = 0; - else - r[i] = j * a[i]; - } - return r.trim(); - } - }, - integ() { - var a = this, n = a.length, emin = a.emin, i, j, r; - r = Series.zero(n, emin + 1); - for(i = 0; i < n; i++) { - j = emin + i; - if (j == -1) { - if (a[i] != 0) - throw RangeError("cannot represent integ(1/X)"); - } else { - r[i] = a[i] / (j + 1); - } - } - return r.trim(); - }, - exp() { - var c, i, r, n, a = this; - if (a.emin < 0) - throw RangeError("negative exponent in exp"); - n = a.emin + a.length; - if (a.emin > 0 || a[0] == 0) { - c = 1; - } else { - c = global.exp(a[0]); - a -= a[0]; - } - r = Series.zero(n, 0); - for(i = 0; i < n; i++) { - r[i] = c / fact(i); - } - return r.apply(a); - }, - log() { - var a = this, r; - if (a.emin != 0) - throw RangeError("log argument must have a non zero constant term"); - r = integ(deriv(a) / a); - /* add the constant term */ - r += global.log(a[0]); - return r; - }, - }); - - add_props(Series, { - /* new series of length n and first exponent emin */ - zero(n, emin) { - var r, i, obj; - - r = []; - for(i = 0; i < n; i++) - r[i] = 0; - /* we return an array and store emin in its prototype */ - obj = Object.create(Series.prototype); - obj.emin = emin; - Object.setPrototypeOf(r, obj); - return r; - }, - O(a) { - function ErrorO() { - return TypeError("invalid O() argument"); - } - var n; - if (series_is_scalar_or_polynomial(a)) { - a = Polynomial(a); - n = a.deg(); - if (n < 0) - throw ErrorO(); - } else if (a instanceof RationalFunction) { - if (a.num.deg() != 0) - throw ErrorO(); - n = a.den.deg(); - if (n < 0) - throw ErrorO(); - n = -n; - } else - throw ErrorO(); - return Series.zero(0, n); - }, - }); - - /* Array (Matrix) */ - - Matrix = function Matrix(h, w) { - var i, j, r, rl; - if (typeof w === "undefined") - w = h; - r = []; - for(i = 0; i < h; i++) { - rl = []; - for(j = 0; j < w; j++) - rl[j] = 0; - r[i] = rl; - } - return r; - }; - - add_props(Matrix, { - idn(n) { - var r, i; - r = Matrix(n, n); - for(i = 0; i < n; i++) - r[i][i] = 1; - return r; - }, - diag(a) { - var r, i, n; - n = a.length; - r = Matrix(n, n); - for(i = 0; i < n; i++) - r[i][i] = a[i]; - return r; - }, - hilbert(n) { - var i, j, r; - r = Matrix(n); - for(i = 0; i < n; i++) { - for(j = 0; j < n; j++) { - r[i][j] = 1 / (1 + i + j); - } - } - return r; - }, - trans(a) { - var h, w, r, i, j; - if (!Array.isArray(a)) - throw TypeError("matrix expected"); - h = a.length; - if (!Array.isArray(a[0])) { - w = 1; - r = Matrix(w, h); - for(i = 0; i < h; i++) { - r[0][i] = a[i]; - } - } else { - w = a[0].length; - r = Matrix(w, h); - for(i = 0; i < h; i++) { - for(j = 0; j < w; j++) { - r[j][i] = a[i][j]; - } - } - } - return r; - }, - check_square(a) { - var a, n; - if (!Array.isArray(a)) - throw TypeError("array expected"); - n = a.length; - if (!Array.isArray(a[0]) || n != a[0].length) - throw TypeError("square matrix expected"); - return n; - }, - trace(a) { - var n, r, i; - n = Matrix.check_square(a); - r = a[0][0]; - for(i = 1; i < n; i++) { - r += a[i][i]; - } - return r; - }, - charpoly(a) { - var n, p, c, i, j, coef; - n = Matrix.check_square(a); - p = []; - for(i = 0; i < n + 1; i++) - p[i] = 0; - p[n] = 1; - c = Matrix.idn(n); - for(i = 0; i < n; i++) { - c = c * a; - coef = -trace(c) / (i + 1); - p[n - i - 1] = coef; - for(j = 0; j < n; j++) - c[j][j] += coef; - } - return Polynomial(p); - }, - eigenvals(a) { - return Polynomial.roots(Matrix.charpoly(a)); - }, - det(a) { - var n, i, j, k, s, src, v, c; - - n = Matrix.check_square(a); - s = 1; - src = a.dup(); - for(i=0;inum; } -static JSValue JS_CompactBigInt1(JSContext *ctx, JSValue val, - BOOL convert_to_safe_integer); +static JSValue JS_CompactBigInt1(JSContext *ctx, JSValue val); static JSValue JS_CompactBigInt(JSContext *ctx, JSValue val); static int JS_ToBigInt64Free(JSContext *ctx, int64_t *pres, JSValue val); static bf_t *JS_ToBigInt(JSContext *ctx, bf_t *buf, JSValueConst val); @@ -2378,14 +2376,6 @@ static inline BOOL is_strict_mode(JSContext *ctx) return (sf && (sf->js_mode & JS_MODE_STRICT)); } -#ifdef CONFIG_BIGNUM -static inline BOOL is_math_mode(JSContext *ctx) -{ - JSStackFrame *sf = ctx->rt->current_stack_frame; - return (sf && (sf->js_mode & JS_MODE_MATH)); -} -#endif - /* JSAtom support */ #define JS_ATOM_TAG_INT (1U << 31) @@ -10086,9 +10076,6 @@ static double js_strtod(const char *p, int radix, BOOL is_float) #define ATOD_TYPE_BIG_INT (1 << 7) #define ATOD_TYPE_BIG_FLOAT (2 << 7) #define ATOD_TYPE_BIG_DECIMAL (3 << 7) -/* assume bigint mode: floats are parsed as integers if no decimal - point nor exponent */ -#define ATOD_MODE_BIGINT (1 << 9) /* accept -0x1 */ #define ATOD_ACCEPT_PREFIX_AFTER_SIGN (1 << 10) @@ -10108,7 +10095,7 @@ static JSValue js_string_to_bigint(JSContext *ctx, const char *buf, JS_FreeValue(ctx, val); return JS_ThrowOutOfMemory(ctx); } - val = JS_CompactBigInt1(ctx, val, (flags & ATOD_MODE_BIGINT) != 0); + val = JS_CompactBigInt1(ctx, val); return val; } @@ -10324,29 +10311,11 @@ static JSValue js_atof(JSContext *ctx, const char *str, const char **pp, } else if (*p == 'm') { p++; atod_type = ATOD_TYPE_BIG_DECIMAL; - } else { - if (flags & ATOD_MODE_BIGINT) { - if (!is_float) - atod_type = ATOD_TYPE_BIG_INT; - if (has_legacy_octal) - goto fail; - } else { - if (is_float && radix != 10) - goto fail; - } - } - } else { - if (atod_type == ATOD_TYPE_FLOAT64) { - if (flags & ATOD_MODE_BIGINT) { - if (!is_float) - atod_type = ATOD_TYPE_BIG_INT; - if (has_legacy_octal) - goto fail; - } else { - if (is_float && radix != 10) - goto fail; - } + } else if (is_float && radix != 10) { + goto fail; } + } else if ((atod_type == ATOD_TYPE_FLOAT64) && is_float && radix != 10) { + goto fail; } switch(atod_type) { @@ -12018,30 +11987,22 @@ JSValue JS_NewBigInt64_1(JSContext *ctx, int64_t v) JSValue JS_NewBigInt64(JSContext *ctx, int64_t v) { - if (is_math_mode(ctx) && - v >= -MAX_SAFE_INTEGER && v <= MAX_SAFE_INTEGER) { - return JS_NewInt64(ctx, v); - } else { - return JS_NewBigInt64_1(ctx, v); - } + return JS_NewBigInt64_1(ctx, v); } JSValue JS_NewBigUint64(JSContext *ctx, uint64_t v) { JSValue val; - if (is_math_mode(ctx) && v <= MAX_SAFE_INTEGER) { - val = JS_NewInt64(ctx, v); - } else { - bf_t *a; - val = JS_NewBigInt(ctx); - if (JS_IsException(val)) - return val; - a = JS_GetBigInt(val); - if (bf_set_ui(a, v)) { - JS_FreeValue(ctx, val); - return JS_ThrowOutOfMemory(ctx); - } + bf_t *a; + val = JS_NewBigInt(ctx); + if (JS_IsException(val)) + return val; + a = JS_GetBigInt(val); + if (bf_set_ui(a, v)) { + JS_FreeValue(ctx, val); + return JS_ThrowOutOfMemory(ctx); } + return val; } @@ -12126,8 +12087,6 @@ static JSValue JS_StringToBigInt(JSContext *ctx, JSValue val) val = JS_NewBigInt64(ctx, 0); } else { flags = ATOD_INT_ONLY | ATOD_ACCEPT_BIN_OCT | ATOD_TYPE_BIG_INT; - if (is_math_mode(ctx)) - flags |= ATOD_MODE_BIGINT; val = js_atof(ctx, p, &p, 0, flags); p += skip_spaces(p); if (!JS_IsException(val)) { @@ -12163,43 +12122,18 @@ static bf_t *JS_ToBigIntFree(JSContext *ctx, bf_t *buf, JSValue val) case JS_TAG_INT: case JS_TAG_NULL: case JS_TAG_UNDEFINED: - if (!is_math_mode(ctx)) - goto fail; - /* fall tru */ + case JS_TAG_FLOAT64: + case JS_TAG_BIG_FLOAT: + goto fail; case JS_TAG_BOOL: r = buf; bf_init(ctx->bf_ctx, r); bf_set_si(r, JS_VALUE_GET_INT(val)); break; - case JS_TAG_FLOAT64: - { - double d = JS_VALUE_GET_FLOAT64(val); - if (!is_math_mode(ctx)) - goto fail; - if (!isfinite(d)) - goto fail; - r = buf; - bf_init(ctx->bf_ctx, r); - d = trunc(d); - bf_set_float64(r, d); - } - break; case JS_TAG_BIG_INT: p = JS_VALUE_GET_PTR(val); r = &p->num; break; - case JS_TAG_BIG_FLOAT: - if (!is_math_mode(ctx)) - goto fail; - p = JS_VALUE_GET_PTR(val); - if (!bf_is_finite(&p->num)) - goto fail; - r = buf; - bf_init(ctx->bf_ctx, r); - bf_set(r, &p->num); - bf_rint(r, BF_RNDZ); - JS_FreeValue(ctx, val); - break; case JS_TAG_STRING: val = JS_StringToBigIntErr(ctx, val); if (JS_IsException(val)) @@ -12328,20 +12262,12 @@ static JSValue JS_NewBigInt(JSContext *ctx) return JS_MKPTR(JS_TAG_BIG_INT, p); } -static JSValue JS_CompactBigInt1(JSContext *ctx, JSValue val, - BOOL convert_to_safe_integer) +static JSValue JS_CompactBigInt1(JSContext *ctx, JSValue val) { - int64_t v; - bf_t *a; - if (JS_VALUE_GET_TAG(val) != JS_TAG_BIG_INT) return val; /* fail safe */ - a = JS_GetBigInt(val); - if (convert_to_safe_integer && bf_get_int64(&v, a, 0) == 0 && - v >= -MAX_SAFE_INTEGER && v <= MAX_SAFE_INTEGER) { - JS_FreeValue(ctx, val); - return JS_NewInt64(ctx, v); - } else if (a->expn == BF_EXP_ZERO && a->sign) { + bf_t *a = JS_GetBigInt(val); + if (a->expn == BF_EXP_ZERO && a->sign) { JSBigFloat *p = JS_VALUE_GET_PTR(val); assert(p->header.ref_count == 1); a->sign = 0; @@ -12349,13 +12275,12 @@ static JSValue JS_CompactBigInt1(JSContext *ctx, JSValue val, return val; } -/* Convert the big int to a safe integer if in math mode. normalize - the zero representation. Could also be used to convert the bigint +/* Nnormalize the zero representation. Could also be used to convert the bigint to a short bigint value. The reference count of the value must be 1. Cannot fail */ static JSValue JS_CompactBigInt(JSContext *ctx, JSValue val) { - return JS_CompactBigInt1(ctx, val, is_math_mode(ctx)); + return JS_CompactBigInt1(ctx, val); } /* must be kept in sync with JSOverloadableOperatorEnum */ @@ -12394,7 +12319,6 @@ static int get_ovop_from_opcode(OPCodeEnum op) case OP_div: return JS_OVOP_DIV; case OP_mod: - case OP_math_mod: return JS_OVOP_MOD; case OP_pow: return JS_OVOP_POW; @@ -12575,63 +12499,6 @@ static __exception int js_call_binary_op_fallback(JSContext *ctx, return -1; } -/* try to call the operation on the operatorSet field of 'obj'. Only - used for "/" and "**" on the BigInt prototype in math mode */ -static __exception int js_call_binary_op_simple(JSContext *ctx, - JSValue *pret, - JSValueConst obj, - JSValueConst op1, - JSValueConst op2, - OPCodeEnum op) -{ - JSValue opset1_obj, method, ret, new_op1, new_op2; - JSOperatorSetData *opset1; - JSOverloadableOperatorEnum ovop; - JSObject *p; - JSValueConst args[2]; - - opset1_obj = JS_GetProperty(ctx, obj, JS_ATOM_Symbol_operatorSet); - if (JS_IsException(opset1_obj)) - goto exception; - if (JS_IsUndefined(opset1_obj)) - return 0; - opset1 = JS_GetOpaque2(ctx, opset1_obj, JS_CLASS_OPERATOR_SET); - if (!opset1) - goto exception; - ovop = get_ovop_from_opcode(op); - - p = opset1->self_ops[ovop]; - if (!p) { - JS_FreeValue(ctx, opset1_obj); - return 0; - } - - new_op1 = JS_ToNumeric(ctx, op1); - if (JS_IsException(new_op1)) - goto exception; - new_op2 = JS_ToNumeric(ctx, op2); - if (JS_IsException(new_op2)) { - JS_FreeValue(ctx, new_op1); - goto exception; - } - - method = JS_DupValue(ctx, JS_MKPTR(JS_TAG_OBJECT, p)); - args[0] = new_op1; - args[1] = new_op2; - ret = JS_CallFree(ctx, method, JS_UNDEFINED, 2, args); - JS_FreeValue(ctx, new_op1); - JS_FreeValue(ctx, new_op2); - if (JS_IsException(ret)) - goto exception; - JS_FreeValue(ctx, opset1_obj); - *pret = ret; - return 1; - exception: - JS_FreeValue(ctx, opset1_obj); - *pret = JS_UNDEFINED; - return -1; -} - /* return -1 if exception, 0 if no operator overloading, 1 if overloaded operator called */ static __exception int js_call_unary_op_fallback(JSContext *ctx, @@ -12703,7 +12570,7 @@ static int js_unary_arith_bigint(JSContext *ctx, int ret, v; JSValue res; - if (op == OP_plus && !is_math_mode(ctx)) { + if (op == OP_plus) { JS_ThrowTypeError(ctx, "bigint argument with unary +"); JS_FreeValue(ctx, op1); return -1; @@ -12755,7 +12622,7 @@ static int js_unary_arith_bigfloat(JSContext *ctx, int ret, v; JSValue res; - if (op == OP_plus && !is_math_mode(ctx)) { + if (op == OP_plus) { JS_ThrowTypeError(ctx, "bigfloat argument with unary +"); JS_FreeValue(ctx, op1); return -1; @@ -12804,7 +12671,7 @@ static int js_unary_arith_bigdecimal(JSContext *ctx, int ret, v; JSValue res; - if (op == OP_plus && !is_math_mode(ctx)) { + if (op == OP_plus) { JS_ThrowTypeError(ctx, "bigdecimal argument with unary +"); JS_FreeValue(ctx, op1); return -1; @@ -12899,7 +12766,6 @@ static no_inline __exception int js_unary_arith_slow(JSContext *ctx, } break; case JS_TAG_BIG_INT: - handle_bigint: if (ctx->rt->bigint_ops.unary_arith(ctx, sp - 1, op, op1)) goto exception; break; @@ -12914,10 +12780,7 @@ static no_inline __exception int js_unary_arith_slow(JSContext *ctx, default: handle_float64: { - double d; - if (is_math_mode(ctx)) - goto handle_bigint; - d = JS_VALUE_GET_FLOAT64(op1); + double d = JS_VALUE_GET_FLOAT64(op1); switch(op) { case OP_inc: case OP_dec: @@ -12979,7 +12842,7 @@ static no_inline int js_not_slow(JSContext *ctx, JSValue *sp) op1 = JS_ToNumericFree(ctx, op1); if (JS_IsException(op1)) goto exception; - if (is_math_mode(ctx) || JS_VALUE_GET_TAG(op1) == JS_TAG_BIG_INT) { + if (JS_VALUE_GET_TAG(op1) == JS_TAG_BIG_INT) { if (ctx->rt->bigint_ops.unary_arith(ctx, sp - 1, OP_not, op1)) goto exception; } else { @@ -13024,11 +12887,6 @@ static int js_binary_arith_bigfloat(JSContext *ctx, OPCodeEnum op, case OP_div: ret = bf_div(r, a, b, ctx->fp_env.prec, ctx->fp_env.flags); break; - case OP_math_mod: - /* Euclidian remainder */ - ret = bf_rem(r, a, b, ctx->fp_env.prec, ctx->fp_env.flags, - BF_DIVREM_EUCLIDIAN); - break; case OP_mod: ret = bf_rem(r, a, b, ctx->fp_env.prec, ctx->fp_env.flags, BF_RNDZ); @@ -13086,72 +12944,20 @@ static int js_binary_arith_bigint(JSContext *ctx, OPCodeEnum op, ret = bf_mul(r, a, b, BF_PREC_INF, BF_RNDZ); break; case OP_div: - if (!is_math_mode(ctx)) { + { bf_t rem_s, *rem = &rem_s; bf_init(ctx->bf_ctx, rem); - ret = bf_divrem(r, rem, a, b, BF_PREC_INF, BF_RNDZ, - BF_RNDZ); + ret = bf_divrem(r, rem, a, b, BF_PREC_INF, BF_RNDZ, BF_RNDZ); bf_delete(rem); - } else { - goto math_mode_div_pow; } break; - case OP_math_mod: - /* Euclidian remainder */ - ret = bf_rem(r, a, b, BF_PREC_INF, BF_RNDZ, - BF_DIVREM_EUCLIDIAN) & BF_ST_INVALID_OP; - break; case OP_mod: ret = bf_rem(r, a, b, BF_PREC_INF, BF_RNDZ, BF_RNDZ) & BF_ST_INVALID_OP; break; case OP_pow: if (b->sign) { - if (!is_math_mode(ctx)) { - ret = BF_ST_INVALID_OP; - } else { - math_mode_div_pow: - JS_FreeValue(ctx, res); - ret = js_call_binary_op_simple(ctx, &res, ctx->class_proto[JS_CLASS_BIG_INT], op1, op2, op); - if (ret != 0) { - JS_FreeBigInt(ctx, a, &a_s); - JS_FreeBigInt(ctx, b, &b_s); - JS_FreeValue(ctx, op1); - JS_FreeValue(ctx, op2); - if (ret < 0) { - return -1; - } else { - *pres = res; - return 0; - } - } - /* if no BigInt power operator defined, return a - bigfloat */ - res = JS_NewBigFloat(ctx); - if (JS_IsException(res)) { - JS_FreeBigInt(ctx, a, &a_s); - JS_FreeBigInt(ctx, b, &b_s); - goto fail; - } - r = JS_GetBigFloat(res); - if (op == OP_div) { - ret = bf_div(r, a, b, ctx->fp_env.prec, ctx->fp_env.flags) & BF_ST_MEM_ERROR; - } else { - ret = bf_pow(r, a, b, ctx->fp_env.prec, - ctx->fp_env.flags | BF_POW_JS_QUIRKS) & BF_ST_MEM_ERROR; - } - JS_FreeBigInt(ctx, a, &a_s); - JS_FreeBigInt(ctx, b, &b_s); - JS_FreeValue(ctx, op1); - JS_FreeValue(ctx, op2); - if (unlikely(ret)) { - JS_FreeValue(ctx, res); - throw_bf_exception(ctx, ret); - return -1; - } - *pres = res; - return 0; - } + ret = BF_ST_INVALID_OP; } else { ret = bf_pow(r, a, b, BF_PREC_INF, BF_RNDZ | BF_POW_JS_QUIRKS); } @@ -13268,10 +13074,6 @@ static int js_binary_arith_bigdecimal(JSContext *ctx, OPCodeEnum op, case OP_div: ret = bfdec_div(r, a, b, BF_PREC_INF, BF_RNDZ); break; - case OP_math_mod: - /* Euclidian remainder */ - ret = bfdec_rem(r, a, b, BF_PREC_INF, BF_RNDZ, BF_DIVREM_EUCLIDIAN); - break; case OP_mod: ret = bfdec_rem(r, a, b, BF_PREC_INF, BF_RNDZ, BF_RNDZ); break; @@ -13358,32 +13160,14 @@ static no_inline __exception int js_binary_arith_slow(JSContext *ctx, JSValue *s break; case OP_mul: v = (int64_t)v1 * (int64_t)v2; - if (is_math_mode(ctx) && - (v < -MAX_SAFE_INTEGER || v > MAX_SAFE_INTEGER)) - goto handle_bigint; if (v == 0 && (v1 | v2) < 0) { sp[-2] = __JS_NewFloat64(ctx, -0.0); return 0; } break; case OP_div: - if (is_math_mode(ctx)) - goto handle_bigint; sp[-2] = __JS_NewFloat64(ctx, (double)v1 / (double)v2); return 0; - case OP_math_mod: - if (unlikely(v2 == 0)) { - throw_bf_exception(ctx, BF_ST_DIVIDE_ZERO); - goto exception; - } - v = (int64_t)v1 % (int64_t)v2; - if (v < 0) { - if (v2 < 0) - v -= v2; - else - v += v2; - } - break; case OP_mod: if (v1 < 0 || v2 <= 0) { sp[-2] = JS_NewFloat64(ctx, fmod(v1, v2)); @@ -13393,13 +13177,8 @@ static no_inline __exception int js_binary_arith_slow(JSContext *ctx, JSValue *s } break; case OP_pow: - if (!is_math_mode(ctx)) { - sp[-2] = JS_NewFloat64(ctx, js_pow(v1, v2)); - return 0; - } else { - goto handle_bigint; - } - break; + sp[-2] = JS_NewFloat64(ctx, js_pow(v1, v2)); + return 0; default: abort(); } @@ -13411,7 +13190,6 @@ static no_inline __exception int js_binary_arith_slow(JSContext *ctx, JSValue *s if (ctx->rt->bigfloat_ops.binary_arith(ctx, op, sp - 2, op1, op2)) goto exception; } else if (tag1 == JS_TAG_BIG_INT || tag2 == JS_TAG_BIG_INT) { - handle_bigint: if (ctx->rt->bigint_ops.binary_arith(ctx, op, sp - 2, op1, op2)) goto exception; } else { @@ -13424,8 +13202,6 @@ static no_inline __exception int js_binary_arith_slow(JSContext *ctx, JSValue *s if (JS_ToFloat64Free(ctx, &d2, op2)) goto exception; handle_float64: - if (is_math_mode(ctx) && is_safe_integer(d1) && is_safe_integer(d2)) - goto handle_bigint; switch(op) { case OP_sub: dr = d1 - d2; @@ -13439,13 +13215,6 @@ static no_inline __exception int js_binary_arith_slow(JSContext *ctx, JSValue *s case OP_mod: dr = fmod(d1, d2); break; - case OP_math_mod: - d2 = fabs(d2); - dr = fmod(d1, d2); - /* XXX: loss of accuracy if dr < 0 */ - if (dr < 0) - dr += d2; - break; case OP_pow: dr = js_pow(d1, d2); break; @@ -13552,7 +13321,6 @@ static no_inline __exception int js_add_slow(JSContext *ctx, JSValue *sp) if (ctx->rt->bigfloat_ops.binary_arith(ctx, OP_add, sp - 2, op1, op2)) goto exception; } else if (tag1 == JS_TAG_BIG_INT || tag2 == JS_TAG_BIG_INT) { - handle_bigint: if (ctx->rt->bigint_ops.binary_arith(ctx, OP_add, sp - 2, op1, op2)) goto exception; } else { @@ -13564,8 +13332,6 @@ static no_inline __exception int js_add_slow(JSContext *ctx, JSValue *sp) } if (JS_ToFloat64Free(ctx, &d2, op2)) goto exception; - if (is_math_mode(ctx) && is_safe_integer(d1) && is_safe_integer(d2)) - goto handle_bigint; sp[-2] = __JS_NewFloat64(ctx, d1 + d2); } return 0; @@ -13618,9 +13384,6 @@ static no_inline __exception int js_binary_logic_slow(JSContext *ctx, goto exception; } - if (is_math_mode(ctx)) - goto bigint_op; - tag1 = JS_VALUE_GET_TAG(op1); tag2 = JS_VALUE_GET_TAG(op2); if (tag1 == JS_TAG_BIG_INT || tag2 == JS_TAG_BIG_INT) { @@ -13629,10 +13392,8 @@ static no_inline __exception int js_binary_logic_slow(JSContext *ctx, JS_FreeValue(ctx, op2); JS_ThrowTypeError(ctx, "both operands must be bigint"); goto exception; - } else { - bigint_op: - if (ctx->rt->bigint_ops.binary_arith(ctx, op, sp - 2, op1, op2)) - goto exception; + } else if (ctx->rt->bigint_ops.binary_arith(ctx, op, sp - 2, op1, op2)) { + goto exception; } } else { if (unlikely(JS_ToInt32Free(ctx, (int32_t *)&v1, op1))) { @@ -13832,8 +13593,7 @@ static no_inline int js_relational_slow(JSContext *ctx, JSValue *sp, goto float64_compare; } else { if (((tag1 == JS_TAG_BIG_INT && tag2 == JS_TAG_STRING) || - (tag2 == JS_TAG_BIG_INT && tag1 == JS_TAG_STRING)) && - !is_math_mode(ctx)) { + (tag2 == JS_TAG_BIG_INT && tag1 == JS_TAG_STRING))) { if (tag1 == JS_TAG_STRING) { op1 = JS_StringToBigInt(ctx, op1); if (JS_VALUE_GET_TAG(op1) != JS_TAG_BIG_INT) @@ -13993,8 +13753,7 @@ static no_inline __exception int js_eq_slow(JSContext *ctx, JSValue *sp, } else if ((tag1 == JS_TAG_STRING && tag_is_number(tag2)) || (tag2 == JS_TAG_STRING && tag_is_number(tag1))) { - if ((tag1 == JS_TAG_BIG_INT || tag2 == JS_TAG_BIG_INT) && - !is_math_mode(ctx)) { + if ((tag1 == JS_TAG_BIG_INT || tag2 == JS_TAG_BIG_INT)) { if (tag1 == JS_TAG_STRING) { op1 = JS_StringToBigInt(ctx, op1); if (JS_VALUE_GET_TAG(op1) != JS_TAG_BIG_INT) @@ -14099,9 +13858,8 @@ static no_inline int js_shr_slow(JSContext *ctx, JSValue *sp) JS_FreeValue(ctx, op1); goto exception; } - /* XXX: could forbid >>> in bignum mode */ - if (!is_math_mode(ctx) && - (JS_VALUE_GET_TAG(op1) == JS_TAG_BIG_INT || + + if ((JS_VALUE_GET_TAG(op1) == JS_TAG_BIG_INT || JS_VALUE_GET_TAG(op2) == JS_TAG_BIG_INT)) { JS_ThrowTypeError(ctx, "bigint operands are forbidden for >>>"); JS_FreeValue(ctx, op1); @@ -16044,16 +15802,7 @@ static JSValue js_call_c_function(JSContext *ctx, JSValueConst func_obj, rt->current_stack_frame = sf; ctx = p->u.cfunc.realm; /* change the current realm */ -#ifdef CONFIG_BIGNUM - /* we only propagate the bignum mode as some runtime functions - test it */ - if (prev_sf) - sf->js_mode = prev_sf->js_mode & JS_MODE_MATH; - else - sf->js_mode = 0; -#else sf->js_mode = 0; -#endif sf->cur_func = (JSValue)func_obj; sf->arg_count = argc; arg_buf = argv; @@ -18022,11 +17771,6 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj, v2 = JS_VALUE_GET_INT(op2); r = (int64_t)v1 * v2; if (unlikely((int)r != r)) { -#ifdef CONFIG_BIGNUM - if (unlikely(sf->js_mode & JS_MODE_MATH) && - (r < -MAX_SAFE_INTEGER || r > MAX_SAFE_INTEGER)) - goto binary_arith_slow; -#endif d = (double)r; goto mul_fp_res; } @@ -18038,10 +17782,6 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj, sp[-2] = JS_NewInt32(ctx, r); sp--; } else if (JS_VALUE_IS_BOTH_FLOAT(op1, op2)) { -#ifdef CONFIG_BIGNUM - if (unlikely(sf->js_mode & JS_MODE_MATH)) - goto binary_arith_slow; -#endif d = JS_VALUE_GET_FLOAT64(op1) * JS_VALUE_GET_FLOAT64(op2); mul_fp_res: sp[-2] = __JS_NewFloat64(ctx, d); @@ -18058,8 +17798,6 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj, op2 = sp[-1]; if (likely(JS_VALUE_IS_BOTH_INT(op1, op2))) { int v1, v2; - if (unlikely(sf->js_mode & JS_MODE_MATH)) - goto binary_arith_slow; v1 = JS_VALUE_GET_INT(op1); v2 = JS_VALUE_GET_INT(op2); sp[-2] = JS_NewFloat64(ctx, (double)v1 / (double)v2); @@ -18070,9 +17808,6 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj, } BREAK; CASE(OP_mod): -#ifdef CONFIG_BIGNUM - CASE(OP_math_mod): -#endif { JSValue op1, op2; op1 = sp[-2]; @@ -18254,29 +17989,10 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj, if (likely(JS_VALUE_IS_BOTH_INT(op1, op2))) { uint32_t v1, v2; v1 = JS_VALUE_GET_INT(op1); - v2 = JS_VALUE_GET_INT(op2); -#ifdef CONFIG_BIGNUM - { - int64_t r; - if (unlikely(sf->js_mode & JS_MODE_MATH)) { - if (v2 > 0x1f) - goto shl_slow; - r = (int64_t)v1 << v2; - if ((int)r != r) - goto shl_slow; - } else { - v2 &= 0x1f; - } - } -#else - v2 &= 0x1f; -#endif + v2 = JS_VALUE_GET_INT(op2) & 0x1f; sp[-2] = JS_NewInt32(ctx, v1 << v2); sp--; } else { -#ifdef CONFIG_BIGNUM - shl_slow: -#endif if (js_binary_logic_slow(ctx, sp, opcode)) goto exception; sp--; @@ -18314,10 +18030,7 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj, v2 = JS_VALUE_GET_INT(op2); #ifdef CONFIG_BIGNUM if (unlikely(v2 > 0x1f)) { - if (unlikely(sf->js_mode & JS_MODE_MATH)) - goto sar_slow; - else - v2 &= 0x1f; + v2 &= 0x1f; } #else v2 &= 0x1f; @@ -18326,9 +18039,6 @@ static JSValue JS_CallInternal(JSContext *caller_ctx, JSValueConst func_obj, (int)JS_VALUE_GET_INT(op1) >> v2); sp--; } else { -#ifdef CONFIG_BIGNUM - sar_slow: -#endif if (js_binary_logic_slow(ctx, sp, opcode)) goto exception; sp--; @@ -19797,9 +19507,6 @@ enum { TOK_AND_ASSIGN, TOK_XOR_ASSIGN, TOK_OR_ASSIGN, -#ifdef CONFIG_BIGNUM - TOK_MATH_POW_ASSIGN, -#endif TOK_POW_ASSIGN, TOK_LAND_ASSIGN, TOK_LOR_ASSIGN, @@ -19819,9 +19526,6 @@ enum { TOK_STRICT_NEQ, TOK_LAND, TOK_LOR, -#ifdef CONFIG_BIGNUM - TOK_MATH_POW, -#endif TOK_POW, TOK_ARROW, TOK_ELLIPSIS, @@ -20906,11 +20610,6 @@ static __exception int next_token(JSParseState *s) ATOD_ACCEPT_UNDERSCORES; #ifdef CONFIG_BIGNUM flags |= ATOD_ACCEPT_SUFFIX; - if (s->cur_func->js_mode & JS_MODE_MATH) { - flags |= ATOD_MODE_BIGINT; - if (s->cur_func->js_mode & JS_MODE_MATH) - flags |= ATOD_TYPE_BIG_FLOAT; - } #endif radix = 0; #ifdef CONFIG_BIGNUM @@ -21076,33 +20775,6 @@ static __exception int next_token(JSParseState *s) goto def_token; } break; -#ifdef CONFIG_BIGNUM - /* in math mode, '^' is the power operator. '^^' is always the - xor operator and '**' is always the power operator */ - case '^': - if (p[1] == '=') { - p += 2; - if (s->cur_func->js_mode & JS_MODE_MATH) - s->token.val = TOK_MATH_POW_ASSIGN; - else - s->token.val = TOK_XOR_ASSIGN; - } else if (p[1] == '^') { - if (p[2] == '=') { - p += 3; - s->token.val = TOK_XOR_ASSIGN; - } else { - p += 2; - s->token.val = '^'; - } - } else { - p++; - if (s->cur_func->js_mode & JS_MODE_MATH) - s->token.val = TOK_MATH_POW; - else - s->token.val = '^'; - } - break; -#else case '^': if (p[1] == '=') { p += 2; @@ -21111,7 +20783,6 @@ static __exception int next_token(JSParseState *s) goto def_token; } break; -#endif case '|': if (p[1] == '=') { p += 2; @@ -25143,24 +24814,6 @@ static __exception int js_parse_unary(JSParseState *s, int parse_flags) break; } if (parse_flags & (PF_POW_ALLOWED | PF_POW_FORBIDDEN)) { -#ifdef CONFIG_BIGNUM - if (s->token.val == TOK_POW || s->token.val == TOK_MATH_POW) { - /* Extended exponentiation syntax rules: we extend the ES7 - grammar in order to have more intuitive semantics: - -2**2 evaluates to -4. */ - if (!(s->cur_func->js_mode & JS_MODE_MATH)) { - if (parse_flags & PF_POW_FORBIDDEN) { - JS_ThrowSyntaxError(s->ctx, "unparenthesized unary expression can't appear on the left-hand side of '**'"); - return -1; - } - } - if (next_token(s)) - return -1; - if (js_parse_unary(s, PF_POW_ALLOWED)) - return -1; - emit_op(s, OP_pow); - } -#else if (s->token.val == TOK_POW) { /* Strict ES7 exponentiation syntax rules: To solve conficting semantics between different implementations @@ -25177,7 +24830,6 @@ static __exception int js_parse_unary(JSParseState *s, int parse_flags) return -1; emit_op(s, OP_pow); } -#endif } return 0; } @@ -25206,12 +24858,7 @@ static __exception int js_parse_expr_binary(JSParseState *s, int level, opcode = OP_div; break; case '%': -#ifdef CONFIG_BIGNUM - if (s->cur_func->js_mode & JS_MODE_MATH) - opcode = OP_math_mod; - else -#endif - opcode = OP_mod; + opcode = OP_mod; break; default: return 0; @@ -25610,12 +25257,6 @@ static __exception int js_parse_assign_expr2(JSParseState *s, int parse_flags) OP_pow, }; op = assign_opcodes[op - TOK_MUL_ASSIGN]; -#ifdef CONFIG_BIGNUM - if (s->cur_func->js_mode & JS_MODE_MATH) { - if (op == OP_mod) - op = OP_math_mod; - } -#endif emit_op(s, op); } put_lvalue(s, opcode, scope, name, label, PUT_LVALUE_KEEP_TOP, FALSE); @@ -29312,10 +28953,7 @@ static __maybe_unused void js_dump_function_bytecode(JSContext *ctx, JSFunctionB printf(" mode:"); if (b->js_mode & JS_MODE_STRICT) printf(" strict"); -#ifdef CONFIG_BIGNUM - if (b->js_mode & JS_MODE_MATH) - printf(" math"); -#endif + printf("\n"); } if (b->arg_count && b->vardefs) { @@ -32897,11 +32535,6 @@ static __exception int js_parse_directives(JSParseState *s) else if (!strcmp(str, "use strip")) { s->cur_func->js_mode |= JS_MODE_STRIP; } -#endif -#ifdef CONFIG_BIGNUM - else if (s->ctx->bignum_ext && !strcmp(str, "use math")) { - s->cur_func->js_mode |= JS_MODE_MATH; - } #endif } return js_parse_seek_token(s, &pos); @@ -52539,15 +52172,12 @@ static JSValue js_typed_array_indexOf(JSContext *ctx, JSValueConst this_val, break; #ifdef CONFIG_BIGNUM case JS_CLASS_BIG_INT64_ARRAY: - if (is_bigint || (is_math_mode(ctx) && is_int && - v64 >= -MAX_SAFE_INTEGER && - v64 <= MAX_SAFE_INTEGER)) { + if (is_bigint) { goto scan64; } break; case JS_CLASS_BIG_UINT64_ARRAY: - if (is_bigint || (is_math_mode(ctx) && is_int && - v64 >= 0 && v64 <= MAX_SAFE_INTEGER)) { + if (is_bigint) { const uint64_t *pv; uint64_t v; scan64: diff --git a/tests/test_qjscalc.js b/tests/test_qjscalc.js deleted file mode 100644 index 1483466..0000000 --- a/tests/test_qjscalc.js +++ /dev/null @@ -1,256 +0,0 @@ -"use math"; -"use strict"; - -function assert(actual, expected, message) { - if (arguments.length == 1) - expected = true; - - if (actual === expected) - return; - - if (actual !== null && expected !== null - && typeof actual == 'object' && typeof expected == 'object' - && actual.toString() === expected.toString()) - return; - - throw Error("assertion failed: got |" + actual + "|" + - ", expected |" + expected + "|" + - (message ? " (" + message + ")" : "")); -} - -function assertThrows(err, func) -{ - var ex; - ex = false; - try { - func(); - } catch(e) { - ex = true; - assert(e instanceof err); - } - assert(ex, true, "exception expected"); -} - -// load more elaborate version of assert if available -try { __loadScript("test_assert.js"); } catch(e) {} - -/*----------------*/ - -function pow(a, n) -{ - var r, i; - r = 1; - for(i = 0; i < n; i++) - r *= a; - return r; -} - -function test_integer() -{ - var a, r; - a = pow(3, 100); - assert((a - 1) != a); - assert(a == 515377520732011331036461129765621272702107522001); - assert(a == 0x5a4653ca673768565b41f775d6947d55cf3813d1); - assert(Integer.isInteger(1) === true); - assert(Integer.isInteger(1.0) === false); - - assert(Integer.floorLog2(0) === -1); - assert(Integer.floorLog2(7) === 2); - - r = 1 << 31; - assert(r, 2147483648, "1 << 31 === 2147483648"); - - r = 1 << 32; - assert(r, 4294967296, "1 << 32 === 4294967296"); - - r = (1 << 31) < 0; - assert(r, false, "(1 << 31) < 0 === false"); - - assert(typeof 1 === "number"); - assert(typeof 9007199254740991 === "number"); - assert(typeof 9007199254740992 === "bigint"); -} - -function test_float() -{ - assert(typeof 1.0 === "bigfloat"); - assert(1 == 1.0); - assert(1 !== 1.0); -} - -/* jscalc tests */ - -function test_modulo() -{ - var i, p, a, b; - - /* Euclidian modulo operator */ - assert((-3) % 2 == 1); - assert(3 % (-2) == 1); - - p = 101; - for(i = 1; i < p; i++) { - a = Integer.invmod(i, p); - assert(a >= 0 && a < p); - assert((i * a) % p == 1); - } - - assert(Integer.isPrime(2^107-1)); - assert(!Integer.isPrime((2^107-1) * (2^89-1))); - a = Integer.factor((2^89-1)*2^3*11*13^2*1009); - assert(a == [ 2,2,2,11,13,13,1009,618970019642690137449562111 ]); -} - -function test_fraction() -{ - assert((1/3 + 1).toString(), "4/3") - assert((2/3)^30, 1073741824/205891132094649); - assert(1/3 < 2/3); - assert(1/3 < 1); - assert(1/3 == 1.0/3); - assert(1.0/3 < 2/3); -} - -function test_mod() -{ - var a, b, p; - - a = Mod(3, 101); - b = Mod(-1, 101); - assert((a + b) == Mod(2, 101)); - assert(a ^ 100 == Mod(1, 101)); - - p = 2 ^ 607 - 1; /* mersenne prime */ - a = Mod(3, p) ^ (p - 1); - assert(a == Mod(1, p)); -} - -function test_polynomial() -{ - var a, b, q, r, t, i; - a = (1 + X) ^ 4; - assert(a == X^4+4*X^3+6*X^2+4*X+1); - - r = (1 + X); - q = (1+X+X^2); - b = (1 - X^2); - a = q * b + r; - t = Polynomial.divrem(a, b); - assert(t[0] == q); - assert(t[1] == r); - - a = 1 + 2*X + 3*X^2; - assert(a.apply(0.1) == 1.23); - - a = 1-2*X^2+2*X^3; - assert(deriv(a) == (6*X^2-4*X)); - assert(deriv(integ(a)) == a); - - a = (X-1)*(X-2)*(X-3)*(X-4)*(X-0.1); - r = polroots(a); - for(i = 0; i < r.length; i++) { - b = abs(a.apply(r[i])); - assert(b <= 1e-13); - } -} - -function test_poly_mod() -{ - var a, p; - - /* modulo using polynomials */ - p = X^2 + X + 1; - a = PolyMod(3+X, p) ^ 10; - assert(a == PolyMod(-3725*X-18357, p)); - - a = PolyMod(1/X, 1+X^2); - assert(a == PolyMod(-X, X^2+1)); -} - -function test_rfunc() -{ - var a; - a = (X+1)/((X+1)*(X-1)); - assert(a == 1/(X-1)); - a = (X + 2) / (X - 2); - assert(a.apply(1/3) == -7/5); - - assert(deriv((X^2-X+1)/(X-1)) == (X^2-2*X)/(X^2-2*X+1)); -} - -function test_series() -{ - var a, b; - a = 1+X+O(X^5); - b = a.inverse(); - assert(b == 1-X+X^2-X^3+X^4+O(X^5)); - assert(deriv(b) == -1+2*X-3*X^2+4*X^3+O(X^4)); - assert(deriv(integ(b)) == b); - - a = Series(1/(1-X), 5); - assert(a == 1+X+X^2+X^3+X^4+O(X^5)); - b = a.apply(0.1); - assert(b == 1.1111); - - assert(exp(3*X^2+O(X^10)) == 1+3*X^2+9/2*X^4+9/2*X^6+27/8*X^8+O(X^10)); - assert(sin(X+O(X^6)) == X-1/6*X^3+1/120*X^5+O(X^6)); - assert(cos(X+O(X^6)) == 1-1/2*X^2+1/24*X^4+O(X^6)); - assert(tan(X+O(X^8)) == X+1/3*X^3+2/15*X^5+17/315*X^7+O(X^8)); - assert((1+X+O(X^6))^(2+X) == 1+2*X+2*X^2+3/2*X^3+5/6*X^4+5/12*X^5+O(X^6)); -} - -function test_matrix() -{ - var a, b, r; - a = [[1, 2],[3, 4]]; - b = [3, 4]; - r = a * b; - assert(r == [11, 25]); - r = (a^-1) * 2; - assert(r == [[-4, 2],[3, -1]]); - - assert(norm2([1,2,3]) == 14); - - assert(diag([1,2,3]) == [ [ 1, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 3 ] ]); - assert(trans(a) == [ [ 1, 3 ], [ 2, 4 ] ]); - assert(trans([1,2,3]) == [[1,2,3]]); - assert(trace(a) == 5); - - assert(charpoly(Matrix.hilbert(4)) == X^4-176/105*X^3+3341/12600*X^2-41/23625*X+1/6048000); - assert(det(Matrix.hilbert(4)) == 1/6048000); - - a = [[1,2,1],[-2,-3,1],[3,5,0]]; - assert(rank(a) == 2); - assert(ker(a) == [ [ 5 ], [ -3 ], [ 1 ] ]); - - assert(dp([1, 2, 3], [3, -4, -7]) === -26); - assert(cp([1, 2, 3], [3, -4, -7]) == [ -2, 16, -10 ]); -} - -function assert_eq(a, ref) -{ - assert(abs(a / ref - 1.0) <= 1e-15); -} - -function test_trig() -{ - assert_eq(sin(1/2), 0.479425538604203); - assert_eq(sin(2+3*I), 9.154499146911428-4.168906959966565*I); - assert_eq(cos(2+3*I), -4.189625690968807-9.109227893755337*I); - assert_eq((2+0.5*I)^(1.1-0.5*I), 2.494363021357619-0.23076804554558092*I); - assert_eq(sqrt(2*I), 1 + I); -} - -test_integer(); -test_float(); - -test_modulo(); -test_fraction(); -test_mod(); -test_polynomial(); -test_poly_mod(); -test_rfunc(); -test_series(); -test_matrix(); -test_trig();