quickjs/tests/test_conv.c
Charlie Gordon 83726bb00c
Add utility functions for string to integer conversions (#366)
* Add utility functions, improve integer conversion functions

- move `is_be()` to cutils.h
- add `is_upper_ascii()` and `to_upper_ascii()`
- add extensive benchmark for integer conversion variants in **tests/test_conv.c**
- add `u32toa()`, `i32toa()`, `u64toa()`, `i64toa()` based on register shift variant
- add  `u32toa_radix()`, `u64toa_radix()`, `i64toa_radix()` based on length_loop variant
- use direct converters instead of `snprintf()`
- copy NaN and Infinity directly in `js_dtoa1()`
- optimize `js_number_toString()` for small integers
- use `JS_NewStringLen()` instead of `JS_NewString()` when possible
- add more precise conversion tests in microbench.js
- disable some benchmark tests for gcc (they cause ASAN failures)
2024-04-19 11:35:44 +02:00

1732 lines
51 KiB
C

/*
* Benchmark integer conversion variants
*
* Copyright (c) 2024 Charlie Gordon
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <ctype.h>
#include <errno.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
//#define USE_SINGLE_CASE 1 // special case single digit numbers
#define USE_SPECIAL_RADIX_10 1 // special case single digit numbers
#define USE_SINGLE_CASE_FAST 1 // special case single digit numbers
#define TEST_SNPRINTF 1 // use snprintf for specific bases (for reference)
#define TEST_NAIVE 1 // naive digit loop and copy loops
#define TEST_REVERSE 1 // naive digit loop and reverse digit string
#define TEST_DIGIT_PAIRS 1 // generate 2 decimal digits at a time
#define TEST_DIGIT_1PASS 1 // generate left to right decimal digits
#define TEST_LENGTH_LOOP 1 // compute length before digit loop using loop
#define TEST_LENGTH_EXPR 1 // compute length before digit loop using expression
#define TEST_SHIFTBUF 1 // generate up to 7 byte chunks in a register
#define TEST_BLOCKMOV 1 // move all digits together
#define TEST_DIV_TABLE 1 // use multiplier table instead of radix divisions
#define TEST_DISPATCH 1 // use dispatch table to optimal 64-bit radix converters
#if (defined(__GNUC__) && !defined(__clang__))
#undef TEST_NAIVE // 32-bit gcc overoptimizes this code
#undef TEST_DIGIT_PAIRS
#endif
/* definitions from cutils.h */
#if !defined(_MSC_VER) && defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
#define minimum_length(n) static n
#else
#define minimum_length(n) n
#endif
#if defined(_MSC_VER) && !defined(__clang__)
# define likely(x) (x)
#else
# define likely(x) __builtin_expect(!!(x), 1)
#endif
#ifndef countof
#define countof(a) (sizeof(a) / sizeof((a)[0]))
#endif
static inline uint8_t is_be(void) {
union {
uint16_t a;
uint8_t b;
} u = { 0x100 };
return u.b;
}
/* WARNING: undefined if a = 0 */
static inline int clz32(unsigned int a)
{
#if defined(_MSC_VER) && !defined(__clang__)
unsigned long index;
_BitScanReverse(&index, a);
return 31 - index;
#else
return __builtin_clz(a);
#endif
}
/* WARNING: undefined if a = 0 */
static inline int clz64(uint64_t a)
{
#if defined(_MSC_VER) && !defined(__clang__)
unsigned long index;
_BitScanReverse64(&index, a);
return 63 - index;
#else
return __builtin_clzll(a);
#endif
}
// prototypes for final functions
extern char const digits36[36];
size_t u32toa(char buf[minimum_length(11)], uint32_t n);
size_t i32toa(char buf[minimum_length(12)], int32_t n);
size_t u64toa(char buf[minimum_length(21)], uint64_t n);
size_t i64toa(char buf[minimum_length(22)], int64_t n);
size_t u32toa_radix(char buf[minimum_length(33)], uint32_t n, unsigned base);
size_t i32toa_radix(char buf[minimum_length(34)], int32_t n, unsigned base);
size_t u64toa_radix(char buf[minimum_length(65)], uint64_t n, unsigned base);
size_t i64toa_radix(char buf[minimum_length(66)], int64_t n, unsigned base);
/*---- integer to string conversions ----*/
/* All conversion functions:
- require a destination array `buf` of sufficient length
- write the string representation at the beginning of `buf`
- null terminate the string
- return the string length
*/
/* 2 <= base <= 36 */
char const digits36[36] = "0123456789abcdefghijklmnopqrstuvwxyz";
/*---- variants ----*/
#define define_i32toa(v) \
size_t i32toa_##v(char buf[minimum_length(12)], int32_t n) \
{ \
if (likely(n >= 0)) \
return u32toa_##v(buf, n); \
buf[0] = '-'; \
return 1 + u32toa_##v(buf + 1, -(uint32_t)n); \
}
#define define_i64toa(v) \
size_t i64toa_##v(char buf[minimum_length(22)], int64_t n) \
{ \
if (likely(n >= 0)) \
return u64toa_##v(buf, n); \
buf[0] = '-'; \
return 1 + u64toa_##v(buf + 1, -(uint64_t)n); \
}
#ifdef TEST_SHIFTBUF
#define gen_digit(buf, c) if (is_be()) \
buf = (buf >> 8) | ((uint64_t)(c) << ((sizeof(buf) - 1) * 8)); \
else \
buf = (buf << 8) | (c)
size_t u7toa_shift(char dest[minimum_length(8)], uint32_t n)
{
size_t len = 1;
uint64_t buf = 0;
while (n >= 10) {
uint32_t quo = n % 10;
n /= 10;
gen_digit(buf, '0' + quo);
len++;
}
gen_digit(buf, '0' + n);
memcpy(dest, &buf, sizeof buf);
return len;
}
size_t u07toa_shift(char dest[minimum_length(8)], uint32_t n, size_t len)
{
size_t i;
dest += len;
dest[7] = '\0';
for (i = 7; i-- > 1;) {
uint32_t quo = n % 10;
n /= 10;
dest[i] = (char)('0' + quo);
}
dest[i] = (char)('0' + n);
return len + 7;
}
size_t u32toa_shift(char buf[minimum_length(11)], uint32_t n)
{
#ifdef USE_SINGLE_CASE_FAST /* 10% */
if (n < 10) {
buf[0] = (char)('0' + n);
buf[1] = '\0';
return 1;
}
#endif
#define TEN_POW_7 10000000
if (n >= TEN_POW_7) {
uint32_t quo = n / TEN_POW_7;
n %= TEN_POW_7;
size_t len = u7toa_shift(buf, quo);
return u07toa_shift(buf, n, len);
}
return u7toa_shift(buf, n);
}
size_t u64toa_shift(char buf[minimum_length(21)], uint64_t n)
{
if (likely(n < 0x100000000))
return u32toa_shift(buf, n);
size_t len;
if (n >= TEN_POW_7) {
uint64_t n1 = n / TEN_POW_7;
n %= TEN_POW_7;
if (n1 >= TEN_POW_7) {
uint32_t quo = n1 / TEN_POW_7;
n1 %= TEN_POW_7;
len = u7toa_shift(buf, quo);
len = u07toa_shift(buf, n1, len);
} else {
len = u7toa_shift(buf, n1);
}
return u07toa_shift(buf, n, len);
}
return u7toa_shift(buf, n);
}
define_i32toa(shift)
define_i64toa(shift)
#endif /* TEST_SHIFTBUF */
#if defined(TEST_DIGIT_PAIRS) || defined(TEST_DIGIT_1PASS)
static char const digits100[200] =
"00010203040506070809"
"10111213141516171819"
"20212223242526272829"
"30313233343536373839"
"40414243444546474849"
"50515253545556575859"
"60616263646566676869"
"70717273747576777879"
"80818283848586878889"
"90919293949596979899";
#endif
#ifdef TEST_DIGIT_PAIRS
size_t u32toa_pair(char buf[minimum_length(11)], uint32_t n)
{
#ifdef USE_SINGLE_CASE
if (n < 10) {
buf[0] = (char)('0' + n);
buf[1] = '\0';
return 1;
}
#endif
char *p = buf;
char *q = buf + 10;
while (n >= 100) {
uint32_t quo = n % 100;
n /= 100;
*--q = digits100[2 * quo + 1];
*--q = digits100[2 * quo];
}
*p = digits100[2 * n];
p += *p != '0';
*p++ = digits100[2 * n + 1];
while (q < buf + 10) {
*p++ = *q++;
*p++ = *q++;
}
*p = '\0';
return p - buf;
}
size_t u64toa_pair(char buf[minimum_length(21)], uint64_t n)
{
if (likely(n < 0x100000000))
return u32toa_pair(buf, n);
char *p = buf;
char *q = buf + 20;
while (n >= 100) {
uint32_t quo = n % 100;
n /= 100;
*--q = digits100[2 * quo + 1];
*--q = digits100[2 * quo];
}
*p = digits100[2 * n];
p += *p != '0';
*p++ = digits100[2 * n + 1];
while (q < buf + 20) {
*p++ = *q++;
*p++ = *q++;
}
*p = '\0';
return p - buf;
}
define_i32toa(pair)
define_i64toa(pair)
#endif /* TEST_DIGIT_PAIRS */
#if TEST_DIGIT_1PASS
static char *u4toa(char p[minimum_length(4)], uint32_t n)
{
const char *digits = digits100;
if (n >= 100) {
uint32_t n1 = n / 100;
n -= n1 * 100;
*p = digits[2 * n1];
p += digits[2 * n1] != '0';
*p++ = digits[2 * n1 + 1];
*p++ = digits[2 * n];
*p++ = digits[2 * n + 1];
return p;
} else {
*p = digits[2 * n];
p += digits[2 * n] != '0';
*p++ = digits[2 * n + 1];
return p;
}
}
static char *u04toa(char p[minimum_length(4)], uint32_t n)
{
const char *digits = digits100;
uint32_t n1 = n / 100;
n -= n1 * 100;
*p++ = digits[2 * n1];
*p++ = digits[2 * n1 + 1];
*p++ = digits[2 * n];
*p++ = digits[2 * n + 1];
return p;
}
static char *u8toa(char p[minimum_length(8)], uint32_t n)
{
if (n >= 10000) {
uint32_t n1 = n / 10000;
n -= n1 * 10000;
p = u4toa(p, n1);
return u04toa(p, n);
}
return u4toa(p, n);
}
static char *u08toa(char p[minimum_length(8)], uint32_t n)
{
uint32_t n1 = n / 10000;
n -= n1 * 10000;
p = u04toa(p, n1);
return u04toa(p, n);
}
size_t u32toa_pair_1pass(char buf[minimum_length(11)], uint32_t n)
{
#ifdef USE_SINGLE_CASE /* 6% */
if (n < 10) {
buf[0] = (char)('0' + n);
buf[1] = '\0';
return 1;
}
#endif
char *p = buf;
/* division by known base uses multiplication */
if (n >= 100000000) {
uint32_t n1 = n / 100000000;
n -= n1 * 100000000;
/* 1 <= n1 <= 42 */
*p = digits100[2 * n1];
p += *p != '0';
*p++ = digits100[2 * n1 + 1];
p = u08toa(p, n);
} else {
p = u8toa(p, n);
}
*p = '\0';
return p - buf;
}
size_t u64toa_pair_1pass(char buf[minimum_length(21)], uint64_t n)
{
if (likely(n < 0x100000000))
return u32toa_pair_1pass(buf, n);
char *p = buf;
/* division by known base uses multiplication */
if (n >= 100000000) {
uint64_t n1 = n / 100000000;
n -= n1 * 100000000;
if (n1 >= 100000000) {
uint32_t n2 = n1 / 100000000;
n1 -= n2 * 100000000;
// 1 <= n2 <= 1844
p = u4toa(p, n2);
p = u08toa(p, n1);
p = u08toa(p, n);
} else {
p = u8toa(p, n1);
p = u08toa(p, n);
}
} else {
p = u8toa(p, n);
}
*p = '\0';
return p - buf;
}
define_i32toa(pair_1pass)
define_i64toa(pair_1pass)
#endif /* TEST_DIGIT_1PASS */
#ifdef TEST_SNPRINTF
size_t u32toa_snprintf(char buf[minimum_length(11)], uint32_t n)
{
return snprintf(buf, 11, "%"PRIu32, n);
}
size_t i32toa_snprintf(char buf[minimum_length(12)], int32_t n)
{
return snprintf(buf, 12, "%"PRId32, n);
}
size_t u64toa_snprintf(char buf[minimum_length(21)], uint64_t n)
{
return snprintf(buf, 21, "%"PRIu64, n);
}
size_t i64toa_snprintf(char buf[minimum_length(22)], int64_t n)
{
return snprintf(buf, 22, "%"PRId64, n);
}
#endif /* TEST_SNPRINTF */
#ifdef TEST_NAIVE
size_t u32toa_naive(char buf[minimum_length(11)], uint32_t n)
{
#ifdef USE_SINGLE_CASE
if (n < 10) {
buf[0] = (char)('0' + n);
buf[1] = '\0';
return 1;
}
#endif
char *p = buf;
char *q = buf + 10;
while (n >= 10) {
uint32_t quo = n % 10;
n /= 10;
*--q = (char)('0' + quo);
}
*p++ = (char)('0' + n);
while (q < buf + 10)
*p++ = *q++;
*p = '\0';
return p - buf;
}
size_t u64toa_naive(char buf[minimum_length(21)], uint64_t n)
{
if (likely(n < 0x100000000))
return u32toa_naive(buf, n);
char *p = buf;
char *q = buf + 20;
while (n >= 10) {
uint32_t quo = n % 10;
n /= 10;
*--q = (char)('0' + quo);
}
*p++ = (char)('0' + n);
while (q < buf + 20)
*p++ = *q++;
*p = '\0';
return p - buf;
}
define_i32toa(naive)
define_i64toa(naive)
#endif /* TEST_NAIVE */
#ifdef TEST_LENGTH_EXPR
size_t u32toa_length_expr(char buf[minimum_length(11)], uint32_t n)
{
#ifdef USE_SINGLE_CASE_FAST /* 8% */
if (n < 10) {
buf[0] = (char)('0' + n);
buf[1] = '\0';
return 1;
}
size_t len = (2 + (n > 99) + (n > 999) +
(n > 9999) + (n > 99999) + (n > 999999) +
(n > 9999999) + (n > 99999999) + (n > 999999999));
#else
size_t len = (1 + (n > 9) + (n > 99) + (n > 999) +
(n > 9999) + (n > 99999) + (n > 999999) +
(n > 9999999) + (n > 99999999) + (n > 999999999));
#endif
char *end = buf + len;
*end-- = '\0';
while (n >= 10) {
uint32_t quo = n % 10;
n /= 10;
*end-- = (char)('0' + quo);
}
*end = (char)('0' + n);
return len;
}
size_t u64toa_length_expr(char buf[minimum_length(21)], uint64_t n)
{
if (likely(n < 0x100000000))
return u32toa_length_expr(buf, n);
#if 0
size_t len = 10 + ((n >= 10000000000ULL) +
(n >= 100000000000ULL) +
(n >= 1000000000000ULL) +
(n >= 10000000000000ULL) +
(n >= 100000000000000ULL) +
(n >= 1000000000000000ULL) +
(n >= 10000000000000000ULL) +
(n >= 100000000000000000ULL) +
(n >= 1000000000000000000ULL) +
(n >= 10000000000000000000ULL));
char *end = buf + len;
*end-- = '\0';
#else
uint64_t n10 = 1000000000;
uint32_t last = n % 10;
n /= 10;
size_t len = 10;
while (n >= n10) {
n10 *= 10;
len++;
}
char *end = buf + len;
*end-- = '\0';
*end-- = (char)('0' + last);
#endif
while (n >= 10) {
uint32_t quo = n % 10;
n /= 10;
*end-- = (char)('0' + quo);
}
*end = (char)('0' + n);
return len;
}
define_i32toa(length_expr)
define_i64toa(length_expr)
#endif /* TEST_LENGTH_EXPR */
#ifdef TEST_LENGTH_LOOP
size_t u32toa_length_loop(char buf[minimum_length(11)], uint32_t n)
{
if (n < 10) {
buf[0] = (char)('0' + n);
buf[1] = '\0';
return 1;
}
uint32_t last = n % 10;
n /= 10;
uint32_t n10 = 10;
size_t len = 2;
while (n >= n10) {
n10 *= 10;
len++;
}
char *end = buf + len;
*end-- = '\0';
*end-- = (char)('0' + last);
while (n >= 10) {
uint32_t quo = n % 10;
n /= 10;
*end-- = (char)('0' + quo);
}
*end = (char)('0' + n);
return len;
}
size_t u64toa_length_loop(char buf[minimum_length(21)], uint64_t n)
{
if (likely(n < 0x100000000))
return u32toa_length_loop(buf, n);
uint32_t last = n % 10;
n /= 10;
uint64_t n10 = 1000000000;
size_t len = 10;
while (n >= n10) {
n10 *= 10;
len++;
}
char *end = buf + len;
*end-- = '\0';
*end-- = (char)('0' + last);
while (n >= 10) {
uint32_t quo = n % 10;
n /= 10;
*end-- = (char)('0' + quo);
}
*end = (char)('0' + n);
return len;
}
define_i32toa(length_loop)
define_i64toa(length_loop)
#endif /* TEST_LENGTH_LOOP */
#if defined(TEST_REVERSE) || defined(TEST_DISPATCH)
size_t u32toa_reverse(char buf[minimum_length(11)], uint32_t n)
{
#ifdef USE_SINGLE_CASE
if (n < 10) {
buf[0] = (char)('0' + n);
buf[1] = '\0';
return 1;
}
#endif
char *end;
size_t len = 0;
while (n >= 10) {
uint32_t quo = n % 10;
n /= 10;
buf[len++] = (char)('0' + quo);
}
buf[len++] = (char)('0' + n);
buf[len] = '\0';
for (end = buf + len - 1; buf < end;) {
char c = *buf;
*buf++ = *end;
*end-- = c;
}
return len;
}
size_t u64toa_reverse(char buf[minimum_length(21)], uint64_t n)
{
if (likely(n < 0x100000000))
return u32toa_reverse(buf, n);
char *end;
size_t len = 0;
while (n >= 10) {
uint32_t quo = n % 10;
n /= 10;
buf[len++] = (char)('0' + quo);
}
buf[len++] = (char)('0' + n);
buf[len] = '\0';
for (end = buf + len - 1; buf < end;) {
char c = *buf;
*buf++ = *end;
*end-- = c;
}
return len;
}
define_i32toa(reverse)
define_i64toa(reverse)
#endif /* TEST_REVERSE */
#ifdef TEST_BLOCKMOV
size_t u32toa_blockmov(char buf[minimum_length(11)], uint32_t n)
{
#ifdef USE_SINGLE_CASE_FAST /* 6% */
if (n < 10) {
buf[0] = (char)('0' + n);
buf[1] = '\0';
return 1;
}
#endif
char buf1[10+10];
char *p = buf;
char *q = buf1 + 10;
*q = '\0';
while (n >= 10) {
uint32_t quo = n % 10;
n /= 10;
*--q = (char)('0' + quo);
}
*p++ = (char)('0' + n);
memcpy(p, q, 10);
return (buf1 + 10) - q + 1;
}
size_t u64toa_blockmov(char buf[minimum_length(21)], uint64_t n)
{
if (likely(n < 0x100000000))
return u32toa_blockmov(buf, n);
char buf1[20+20];
char *p = buf;
char *q = buf1 + 20;
*q = '\0';
while (n >= 10) {
uint32_t quo = n % 10;
n /= 10;
*--q = (char)('0' + quo);
}
*p++ = (char)('0' + n);
memcpy(p, q, 20);
return (buf1 + 20) - q + 1;
}
define_i32toa(blockmov)
define_i64toa(blockmov)
#endif /* TEST_BLOCKMOV */
/*---- radix conversion variants ----*/
#define define_i32toa_radix(v) \
size_t i32toa_radix_##v(char buf[minimum_length(34)], int32_t n, unsigned base) \
{ \
if (likely(n >= 0)) \
return u32toa_radix_##v(buf, n, base); \
buf[0] = '-'; \
return 1 + u32toa_radix_##v(buf + 1, -(uint32_t)n, base); \
}
#define define_i64toa_radix(v) \
size_t i64toa_radix_##v(char buf[minimum_length(66)], int64_t n, unsigned base) \
{ \
if (likely(n >= 0)) \
return u64toa_radix_##v(buf, n, base); \
buf[0] = '-'; \
return 1 + u64toa_radix_##v(buf + 1, -(uint64_t)n, base); \
}
#ifdef TEST_NAIVE
size_t u32toa_radix_naive(char buf[minimum_length(33)], uint32_t n, unsigned base)
{
#ifdef USE_SPECIAL_RADIX_10
if (likely(base == 10))
return u32toa_naive(buf, n);
#endif
#ifdef USE_SINGLE_CASE
if (n < base) {
buf[0] = digits36[n];
buf[1] = '\0';
return 1;
}
#endif
char buf1[32];
char *q = buf1 + 32;
char *p = buf;
while (n >= base) {
size_t digit = n % base;
n /= base;
*--q = digits36[digit];
}
*--q = digits36[n];
while (q < buf1 + 32) {
*p++ = *q++;
}
*p = '\0';
return p - buf;
}
size_t u64toa_radix_naive(char buf[minimum_length(65)], uint64_t n, unsigned base)
{
if (likely(n < 0x100000000))
return u32toa_radix_naive(buf, n, base);
#ifdef USE_SPECIAL_RADIX_10
if (likely(base == 10))
return u64toa_naive(buf, n);
#endif
char buf1[64];
char *q = buf1 + 64;
char *p = buf;
while (n >= base) {
size_t digit = n % base;
n /= base;
*--q = digits36[digit];
}
*--q = digits36[n];
while (q < buf1 + 64) {
*p++ = *q++;
}
*p = '\0';
return p - buf;
}
define_i32toa_radix(naive)
define_i64toa_radix(naive)
#endif // TEST_NAIVE
#if defined(TEST_REVERSE) || defined(TEST_DISPATCH)
size_t u32toa_radix_reverse(char buf[minimum_length(33)], uint32_t n, unsigned base)
{
#ifdef USE_SPECIAL_RADIX_10
if (likely(base == 10))
return u32toa_reverse(buf, n);
#endif
#ifdef USE_SINGLE_CASE
if (n < base) {
buf[0] = digits36[n];
buf[1] = '\0';
return 1;
}
#endif
char *end;
size_t len = 0;
while (n >= base) {
uint32_t quo = n % base;
n /= base;
buf[len++] = digits36[quo];
}
buf[len++] = digits36[n];
buf[len] = '\0';
for (end = buf + len - 1; buf < end;) {
char c = *buf;
*buf++ = *end;
*end-- = c;
}
return len;
}
size_t u64toa_radix_reverse(char buf[minimum_length(65)], uint64_t n, unsigned base)
{
if (likely(n < 0x100000000))
return u32toa_radix_reverse(buf, n, base);
#ifdef USE_SPECIAL_RADIX_10
if (likely(base == 10))
return u64toa_reverse(buf, n);
#endif
char *end;
size_t len = 0;
while (n >= base) {
uint32_t quo = n % base;
n /= base;
buf[len++] = digits36[quo];
}
buf[len++] = digits36[n];
buf[len] = '\0';
for (end = buf + len - 1; buf < end;) {
char c = *buf;
*buf++ = *end;
*end-- = c;
}
return len;
}
define_i32toa_radix(reverse)
define_i64toa_radix(reverse)
#endif // TEST_REVERSE
#ifdef TEST_LENGTH_LOOP
static uint8_t const radix_shift[64] = {
0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0,
4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
size_t u32toa_radix_length(char buf[minimum_length(33)], uint32_t n, unsigned base)
{
#ifdef USE_SPECIAL_RADIX_10
if (likely(base == 10))
return u32toa_length_loop(buf, n);
#endif
if (n < base) {
buf[0] = digits36[n];
buf[1] = '\0';
return 1;
}
int shift = radix_shift[base & 63];
if (shift) {
uint32_t mask = (1 << shift) - 1;
size_t len = (32 - clz32(n) + shift - 1) / shift;
size_t last = n & mask;
n /= base;
char *end = buf + len;
*end-- = '\0';
*end-- = digits36[last];
while (n >= base) {
size_t quo = n & mask;
n >>= shift;
*end-- = digits36[quo];
}
*end = digits36[n];
return len;
} else {
size_t len = 2;
size_t last = n % base;
n /= base;
uint32_t nbase = base;
while (n >= nbase) {
nbase *= base;
len++;
}
char *end = buf + len;
*end-- = '\0';
*end-- = digits36[last];
while (n >= base) {
size_t quo = n % base;
n /= base;
*end-- = digits36[quo];
}
*end = digits36[n];
return len;
}
}
size_t u64toa_radix_length(char buf[minimum_length(65)], uint64_t n, unsigned base)
{
#ifdef USE_SPECIAL_RADIX_10
if (likely(base == 10))
return u64toa_length_loop(buf, n);
#endif
int shift = radix_shift[base & 63];
if (shift) {
if (n < base) {
buf[0] = digits36[n];
buf[1] = '\0';
return 1;
}
uint64_t mask = (1 << shift) - 1;
size_t len = (64 - clz64(n) + shift - 1) / shift;
size_t last = n & mask;
n /= base;
char *end = buf + len;
*end-- = '\0';
*end-- = digits36[last];
while (n >= base) {
size_t quo = n & mask;
n >>= shift;
*end-- = digits36[quo];
}
*end = digits36[n];
return len;
} else {
if (likely(n < 0x100000000))
return u32toa_radix_length(buf, n, base);
size_t last = n % base;
n /= base;
uint64_t nbase = base;
size_t len = 2;
while (n >= nbase) {
nbase *= base;
len++;
}
char *end = buf + len;
*end-- = '\0';
*end-- = digits36[last];
while (n >= base) {
size_t quo = n % base;
n /= base;
*end-- = digits36[quo];
}
*end = digits36[n];
return len;
}
}
define_i32toa_radix(length)
define_i64toa_radix(length)
#endif // TEST_LENGTH_LOOP
#ifdef TEST_DIV_TABLE
static struct {
uint32_t chunk : 27;
uint32_t ndig : 5;
uint32_t mul;
} const div_table32[37] = {
{ 0, 0, 0 }, // 0
{ 1, 1, 1 }, // 1
{ 67108864, 26, 2147483648 }, // 2
{ 129140163, 17, 1431655776 }, // 3
{ 67108864, 13, 1073741824 }, // 4
{ 48828125, 11, 858993464 }, // 5
{ 60466176, 10, 715827888 }, // 6
{ 40353607, 9, 613566760 }, // 7
{ 16777216, 8, 536870912 }, // 8
{ 43046721, 8, 477218592 }, // 9
{ 100000000, 8, 429496732 }, // 10
{ 19487171, 7, 390451574 }, // 11
{ 35831808, 7, 357913944 }, // 12
{ 62748517, 7, 330382100 }, // 13
{ 105413504, 7, 306783380 }, // 14
{ 11390625, 6, 286331154 }, // 15
{ 16777216, 6, 268435456 }, // 16
{ 24137569, 6, 252645136 }, // 17
{ 34012224, 6, 238609296 }, // 18
{ 47045881, 6, 226050912 }, // 19
{ 64000000, 6, 214748366 }, // 20
{ 85766121, 6, 204522253 }, // 21
{ 113379904, 6, 195225787 }, // 22
{ 6436343, 5, 186737709 }, // 23
{ 7962624, 5, 178956972 }, // 24
{ 9765625, 5, 171798692 }, // 25
{ 11881376, 5, 165191050 }, // 26
{ 14348907, 5, 159072864 }, // 27
{ 17210368, 5, 153391690 }, // 28
{ 20511149, 5, 148102321 }, // 29
{ 24300000, 5, 143165577 }, // 30
{ 28629151, 5, 138547333 }, // 31
{ 33554432, 5, 134217728 }, // 32
{ 39135393, 5, 130150525 }, // 33
{ 45435424, 5, 126322568 }, // 34
{ 52521875, 5, 122713352 }, // 35
{ 60466176, 5, 119304648 }, // 36
};
size_t u32toa_radix_div_table(char buf[minimum_length(33)], uint32_t n, unsigned base)
{
#ifdef USE_SPECIAL_RADIX_10
if (likely(base == 10))
return u32toa_shift(buf, n);
#endif
#ifdef USE_SINGLE_CASE
if (n < base) {
buf[0] = digits36[n];
buf[1] = '\0';
return 1;
}
#endif
char buf1[32];
char *q = buf1 + 32;
char *p = buf;
uint32_t chunk = div_table32[base].chunk;
uint32_t ndig = div_table32[base].ndig;
uint32_t mul = div_table32[base].mul;
while (n >= chunk) {
uint32_t quo = n / chunk;
uint32_t n1 = n - quo * chunk;
n = quo;
for (uint32_t i = ndig; i-- > 0;) {
uint32_t quo1 = ((uint64_t)n1 * mul) >> 32;
size_t digit = n1 - quo1 * base;
n1 = quo1;
*--q = digits36[digit];
}
}
while (n >= base) {
uint32_t quo = ((uint64_t)n * mul) >> 32;
size_t digit = n - quo * base;
n = quo;
*--q = digits36[digit];
}
*--q = digits36[n];
while (q < buf1 + 32) {
*p++ = *q++;
}
*p = '\0';
return p - buf;
}
size_t u64toa_radix_div_table(char buf[minimum_length(65)], uint64_t n, unsigned base)
{
if (likely(n < 0x100000000))
return u32toa_radix_div_table(buf, n, base);
#ifdef USE_SPECIAL_RADIX_10
if (likely(base == 10))
return u64toa_shift(buf, n);
#endif
char buf1[64];
char *q = buf1 + 64;
char *p = buf;
uint32_t chunk = div_table32[base].chunk;
uint32_t ndig = div_table32[base].ndig;
uint32_t mul = div_table32[base].mul;
while (n >= chunk) {
uint64_t quo = n / chunk;
uint32_t n1 = n - quo * chunk;
n = quo;
for (uint32_t i = ndig; i-- > 0;) {
uint32_t quo1 = ((uint64_t)n1 * mul) >> 32;
size_t digit = n1 - quo1 * base;
n1 = quo1;
*--q = digits36[digit];
}
}
uint32_t n1 = n;
while (n1 >= base) {
uint32_t quo1 = ((uint64_t)n1 * mul) >> 32;
size_t digit = n1 - quo1 * base;
n1 = quo1;
*--q = digits36[digit];
}
*--q = digits36[n1];
while (q < buf1 + 64) {
*p++ = *q++;
}
*p = '\0';
return p - buf;
}
define_i32toa_radix(div_table)
define_i64toa_radix(div_table)
#endif // TEST_DIV_TABLE
#ifdef TEST_DISPATCH
static size_t u64toa_radix_d10(char buf[minimum_length(65)], uint64_t n, unsigned base)
{
return u64toa_shift(buf, n);
}
static size_t u64toa_radix_d2(char buf[minimum_length(65)], uint64_t n, unsigned base)
{
if (n < 2) {
buf[0] = (char)('0' + n);
buf[1] = '\0';
return 1;
}
size_t len = (64 - clz64(n));
char *end = buf + len;
*end-- = '\0';
while (n >= 2) {
uint32_t quo = n & 1;
n >>= 1;
*end-- = (char)('0' + quo);
}
*end-- = (char)('0' + n);
return len;
}
static size_t u64toa_radix_d8(char buf[minimum_length(65)], uint64_t n, unsigned base)
{
if (n < 8) {
buf[0] = (char)('0' + n);
buf[1] = '\0';
return 1;
}
size_t len = (64 - clz64(n) + 2) / 3;
char *end = buf + len;
*end-- = '\0';
while (n >= 8) {
uint32_t quo = n & 7;
n >>= 3;
*end-- = (char)('0' + quo);
}
*end-- = (char)('0' + n);
return len;
}
static size_t u64toa_radix_d16(char buf[minimum_length(65)], uint64_t n, unsigned base)
{
if (n < 16) {
buf[0] = digits36[n];
buf[1] = '\0';
return 1;
}
size_t len = (64 - clz64(n) + 3) / 4;
char *end = buf + len;
*end-- = '\0';
while (n >= 16) {
uint32_t quo = n & 15;
n >>= 4;
*end-- = digits36[quo];
}
*end = digits36[n];
return len;
}
#define u64toa_reverse_base(radix) \
static size_t u64toa_reverse_##radix(char buf[minimum_length(65)], uint64_t n, unsigned base) \
{ \
char *end; \
size_t len = 0; \
while (n >= radix) { \
size_t quo = n % radix; \
n /= radix; \
if (radix > 9) buf[len++] = digits36[quo]; \
else buf[len++] = (char)('0' + quo); \
} \
if (radix > 9) buf[len++] = digits36[n]; \
else buf[len++] = (char)('0' + n); \
buf[len] = '\0'; \
for (end = buf + len - 1; buf < end;) { \
char c = *buf; \
*buf++ = *end; \
*end-- = c; \
} \
return len; \
}
u64toa_reverse_base(3)
u64toa_reverse_base(4)
u64toa_reverse_base(5)
u64toa_reverse_base(6)
u64toa_reverse_base(7)
u64toa_reverse_base(9)
u64toa_reverse_base(11)
u64toa_reverse_base(12)
u64toa_reverse_base(13)
u64toa_reverse_base(14)
u64toa_reverse_base(15)
u64toa_reverse_base(17)
u64toa_reverse_base(18)
u64toa_reverse_base(19)
u64toa_reverse_base(20)
u64toa_reverse_base(21)
u64toa_reverse_base(22)
u64toa_reverse_base(23)
u64toa_reverse_base(24)
u64toa_reverse_base(25)
u64toa_reverse_base(26)
u64toa_reverse_base(27)
u64toa_reverse_base(28)
u64toa_reverse_base(29)
u64toa_reverse_base(30)
u64toa_reverse_base(31)
u64toa_reverse_base(32)
u64toa_reverse_base(33)
u64toa_reverse_base(34)
u64toa_reverse_base(35)
u64toa_reverse_base(36)
typedef size_t (*u64toa_radix_func)(char buf[minimum_length(65)], uint64_t n, unsigned base);
static const u64toa_radix_func u64toa_radix_table[37] = {
#if 0
u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_d2, u64toa_radix_reverse,
u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_reverse,
u64toa_radix_d8, u64toa_radix_reverse, u64toa_radix_d10, u64toa_radix_reverse,
u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_reverse,
u64toa_radix_d16, u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_reverse,
u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_reverse,
u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_reverse,
u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_reverse,
u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_reverse,
u64toa_radix_reverse,
#else
u64toa_radix_reverse, u64toa_radix_reverse, u64toa_radix_d2, u64toa_reverse_3,
u64toa_reverse_4, u64toa_reverse_5, u64toa_reverse_6, u64toa_reverse_7,
u64toa_radix_d8, u64toa_reverse_9, u64toa_radix_d10, u64toa_reverse_11,
u64toa_reverse_12, u64toa_reverse_13, u64toa_reverse_14, u64toa_reverse_15,
u64toa_radix_d16, u64toa_reverse_17, u64toa_reverse_18, u64toa_reverse_19,
u64toa_reverse_20, u64toa_reverse_21, u64toa_reverse_22, u64toa_reverse_23,
u64toa_reverse_24, u64toa_reverse_25, u64toa_reverse_26, u64toa_reverse_27,
u64toa_reverse_28, u64toa_reverse_29, u64toa_reverse_30, u64toa_reverse_31,
u64toa_reverse_32, u64toa_reverse_33, u64toa_reverse_34, u64toa_reverse_35,
u64toa_reverse_36,
#endif
};
size_t u32toa_radix_dispatch(char buf[minimum_length(33)], uint32_t n, unsigned base)
{
return u64toa_radix_table[base % 37](buf, n, base);
}
size_t u64toa_radix_dispatch(char buf[minimum_length(65)], uint64_t n, unsigned base)
{
return u64toa_radix_table[base % 37](buf, n, base);
}
define_i32toa_radix(dispatch)
define_i64toa_radix(dispatch)
#endif // TEST_DISPATCH
#ifdef TEST_SNPRINTF
size_t u32toa_radix_snprintf(char buf[minimum_length(33)], uint32_t n, unsigned base)
{
switch (base) {
#ifdef PRIb32
case 2: return snprintf(buf, 33, "%"PRIb32, n);
#endif
case 8: return snprintf(buf, 33, "%"PRIo32, n);
case 10: return snprintf(buf, 33, "%"PRIu32, n);
case 16: return snprintf(buf, 33, "%"PRIx32, n);
#ifdef TEST_NAIVE
default: return u32toa_radix_naive(buf, n, base);
#else
default: return u32toa_radix_reverse(buf, n, base);
#endif
}
}
size_t u64toa_radix_snprintf(char buf[minimum_length(65)], uint64_t n, unsigned base)
{
switch (base) {
#ifdef PRIb64
case 2: return snprintf(buf, 65, "%"PRIb64, n);
#endif
case 8: return snprintf(buf, 65, "%"PRIo64, n);
case 10: return snprintf(buf, 65, "%"PRIu64, n);
case 16: return snprintf(buf, 65, "%"PRIx64, n);
#ifdef TEST_NAIVE
default: return u64toa_radix_naive(buf, n, base);
#else
default: return u64toa_radix_reverse(buf, n, base);
#endif
}
}
define_i32toa_radix(snprintf)
define_i64toa_radix(snprintf)
#endif // TEST_SNPRINTF
/*---- Benchmarking framework ----*/
/* Benchmark various alternatives and bases:
- u32toa(), u64toa(), i32toa(), i64toa()
- u32toa_radix(), u64toa_radix(), i32toa_radix(), i64toa_radix()
- different implementations: naive, ...
- various sets of values
*/
struct {
const char *name;
int enabled;
size_t (*u32toa)(char buf[minimum_length(11)], uint32_t n);
size_t (*i32toa)(char buf[minimum_length(12)], int32_t n);
size_t (*u64toa)(char buf[minimum_length(21)], uint64_t n);
size_t (*i64toa)(char buf[minimum_length(22)], int64_t n);
} impl[] =
{
#define TESTCASE(v) { #v, 2, u32toa_##v, i32toa_##v, u64toa_##v, i64toa_##v }
#ifdef TEST_SNPRINTF
TESTCASE(snprintf),
#endif
#ifdef TEST_NAIVE
TESTCASE(naive),
#endif
#ifdef TEST_BLOCKMOV
TESTCASE(blockmov),
#endif
#ifdef TEST_REVERSE
TESTCASE(reverse),
#endif
#ifdef TEST_LENGTH_EXPR
TESTCASE(length_expr),
#endif
#ifdef TEST_LENGTH_LOOP
TESTCASE(length_loop),
#endif
#ifdef TEST_SHIFTBUF
TESTCASE(shift),
#endif
#ifdef TEST_DIGIT_PAIRS
TESTCASE(pair),
#endif
#ifdef TEST_DIGIT_1PASS
TESTCASE(pair_1pass),
#endif
#undef TESTCASE
};
struct {
const char *name;
int enabled;
size_t (*u32toa_radix)(char buf[minimum_length(33)], uint32_t n, unsigned base);
size_t (*i32toa_radix)(char buf[minimum_length(34)], int32_t n, unsigned base);
size_t (*u64toa_radix)(char buf[minimum_length(65)], uint64_t n, unsigned base);
size_t (*i64toa_radix)(char buf[minimum_length(66)], int64_t n, unsigned base);
} impl1[] =
{
#define TESTCASE(v) { #v, 2, u32toa_radix_##v, i32toa_radix_##v, u64toa_radix_##v, i64toa_radix_##v }
#ifdef TEST_SNPRINTF
TESTCASE(snprintf),
#endif
#ifdef TEST_NAIVE
TESTCASE(naive),
#endif
#ifdef TEST_REVERSE
TESTCASE(reverse),
#endif
#ifdef TEST_DIV_TABLE
TESTCASE(div_table),
#endif
#ifdef TEST_LENGTH_LOOP
TESTCASE(length),
#endif
#ifdef TEST_DISPATCH
TESTCASE(dispatch),
#endif
#undef TESTCASE
};
static clock_t start_timer(void) {
clock_t t0, t;
t0 = clock();
// wait for next transition
while ((t = clock()) == t0)
continue;
return t;
}
static clock_t stop_timer(clock_t t) {
return clock() - t;
}
#define TIME(time, iter, s, w, e) { \
t = start_timer(); \
uint64_t r0 = 0; \
for (int nn = 0; nn < iter; nn++) { \
r0 = r0 * 1103515245 + 12345; \
uint##w##_t mask, r = r0; \
for (int kk = 0; kk < 64; kk += w) { \
for (mask = 1; mask != 0; ) { \
mask += mask; \
if (s) { \
int##w##_t x = (r & (mask - 1)) - (r & mask); \
e; \
} else { \
uint##w##_t x = r & (mask - 1); \
e; \
} \
} \
r ^= (r >> 1); \
} \
} \
t = stop_timer(t); \
if (time == 0 || time > t) \
time = t; \
}
#define CHECK(tab, iter, s, w, e, check) { \
uint64_t r0 = 0; \
for (int nn = 0; nn < iter; nn++) { \
r0 = r0 * 1103515245 + 12345; \
uint##w##_t mask, r = r0; \
for (int kk = 0; kk < 64; kk += w) { \
for (mask = 1; mask != 0; ) { \
mask += mask; \
if (s) { \
int##w##_t x = (r & (mask - 1)) - (r & mask); \
size_t len = tab.e; \
errno = 0; \
int64_t y = check; \
if (errno || x != y || len != strlen(buf)) { \
printf("error: %.*s_%s(%lld) base=%d -> %s -> %lld (errno=%d)\n", \
(int)strcspn(#e, "("), #e, tab.name, \
(long long)x, base, buf, (long long)y, errno); \
if (nerrors > 20) exit(1); \
} \
} else { \
uint##w##_t x = r & (mask - 1); \
size_t len = tab.e; \
errno = 0; \
uint64_t y = check; \
if (errno || x != y || len != strlen(buf)) { \
printf("error: %.*s_%s(%llu) base=%d -> %s -> %llu (errno=%d)\n", \
(int)strcspn(#e, "("), #e, tab.name, \
(unsigned long long)x, base, buf, (unsigned long long)y, errno); \
if (nerrors > 20) exit(1); \
} \
} \
} \
r ^= (r >> 1); \
} \
} \
}
void show_usage(void) {
printf("usage: test_conv [options] [bases] [filters]\n"
" options:\n"
" -h --help output this help\n"
" -t --terse only output average stats\n"
" -v --verbose output stats for all tested bases\n"
" bases\n"
" bases can be specified individually, as ranges or enumerations\n"
" supported bases are 2-36\n"
" examples: 10 2,8,16 2-10,16\n"
" filters are words that must be contained in variant names\n"
" examples: naive pri len rev\n"
" variants:\n"
#ifdef TEST_SNPRINTF
" snprintf use snprintf for supported bases for reference\n"
#endif
#ifdef TEST_NAIVE
" naive naive digit loop and copy loops\n"
#endif
#ifdef TEST_BLOCKMOV
" blockmov same but move all digits together\n"
#endif
#ifdef TEST_REVERSE
" reverse naive digit loop and reverse digit string\n"
#endif
#ifdef TEST_LENGTH_LOOP
" length_loop compute length before digit loop using loop\n"
#endif
#ifdef TEST_LENGTH_EXPR
" length_expr compute length before digit loop using expression\n"
#endif
#ifdef TEST_SHIFTBUF
" shift generate up to 7 digit chunks in a register\n"
#endif
#ifdef TEST_DIGIT_PAIRS
" pair generate 2 decimal digits at a time\n"
#endif
#ifdef TEST_DIGIT_1PASS
" pair_1pass same but as a single left to right pass\n"
#endif
#ifdef TEST_DIV_TABLE
" div_table use multiplier table instead of radix divisions\n"
#endif
#ifdef TEST_DISPATCH
" dispatch use dispatch table to optimal 64-bit radix converters\n"
#endif
);
}
int main(int argc, char *argv[]) {
clock_t t;
clock_t times[countof(impl)][4];
clock_t times1[countof(impl1)][4][37];
char buf[100];
uint64_t bases = 0;
int verbose = 0;
int average = 1;
int enabled = 3;
memset(times, 0, sizeof times);
memset(times1, 0, sizeof times1);
for (int a = 1; a < argc; a++) {
char *arg = argv[a];
if (isdigit((unsigned char)*arg)) {
verbose = 1;
while (isdigit((unsigned char)*arg)) {
int b1 = strtol(arg, &arg, 10);
bases |= (1ULL << b1);
if (*arg == '-') {
int b2 = strtol(arg, &arg, 10);
while (++b1 <= b2)
bases |= (1ULL << b1);
}
if (*arg == ',') {
arg++;
continue;
}
}
if (*arg) {
fprintf(stderr, "invalid option syntax: %s\n", argv[a]);
return 2;
}
if (!(bases & (bases - 1))) { /* single base */
average = 0;
verbose = 1;
}
continue;
} else if (!strcmp(arg, "-t") || !strcmp(arg, "--terse")) {
verbose = 0;
average = 1;
continue;
} else if (!strcmp(arg, "-v") || !strcmp(arg, "--verbose")) {
verbose = 1;
continue;
} else if (!strcmp(arg, "-h") || !strcmp(arg, "-?") || !strcmp(arg, "--help")) {
show_usage();
return 0;
} else {
int found = 0;
for (size_t i = 0; i < countof(impl); i++) {
if (strstr(impl[i].name, arg)) {
impl[i].enabled = 1;
found = 1;
}
}
for (size_t i = 0; i < countof(impl1); i++) {
if (strstr(impl1[i].name, arg)) {
impl1[i].enabled = 1;
found = 1;
}
}
if (!found) {
fprintf(stderr, "no variant for filter: %s\n", argv[a]);
return 2;
}
enabled = 1;
continue;
}
}
if (!bases)
bases = -1;
if (bases & (bases - 1)) /* multiple bases */
average = 1;
int numvariant = 0;
int numvariant1 = 0;
int nerrors = 0;
if (bases & (1ULL << 10)) {
for (size_t i = 0; i < countof(impl); i++) {
unsigned base = 10;
if (impl[i].enabled & enabled) {
CHECK(impl[i], 100000, 0, 32, u32toa(buf, x), strtoull(buf, NULL, 10));
CHECK(impl[i], 100000, 1, 32, i32toa(buf, x), strtoll(buf, NULL, 10));
CHECK(impl[i], 100000, 0, 64, u64toa(buf, x), strtoull(buf, NULL, 10));
CHECK(impl[i], 100000, 1, 64, i64toa(buf, x), strtoll(buf, NULL, 10));
}
}
}
for (size_t i = 0; i < countof(impl1); i++) {
if (impl1[i].enabled & enabled) {
for (unsigned base = 2; base <= 36; base++) {
if (bases & (1ULL << base)) {
CHECK(impl1[i], 1000, 0, 32, u32toa_radix(buf, x, base), strtoull(buf, NULL, base));
CHECK(impl1[i], 1000, 1, 32, i32toa_radix(buf, x, base), strtoll(buf, NULL, base));
CHECK(impl1[i], 1000, 0, 64, u64toa_radix(buf, x, base), strtoull(buf, NULL, base));
CHECK(impl1[i], 1000, 1, 64, i64toa_radix(buf, x, base), strtoll(buf, NULL, base));
}
}
}
}
if (nerrors)
return 1;
if (bases & (1ULL << 10)) {
for (int rep = 0; rep < 100; rep++) {
for (size_t i = 0; i < countof(impl); i++) {
if (impl[i].enabled & enabled) {
numvariant++;
#ifdef TEST_SNPRINTF
if (strstr(impl[i].name, "snprintf")) { // avoid function call overhead
TIME(times[i][0], 1000, 0, 32, snprintf(buf, 11, "%"PRIu32, x));
TIME(times[i][1], 1000, 1, 32, snprintf(buf, 12, "%"PRIi32, x));
TIME(times[i][2], 1000, 0, 64, snprintf(buf, 21, "%"PRIu64, x));
TIME(times[i][3], 1000, 1, 64, snprintf(buf, 22, "%"PRIi64, x));
} else
#endif
{
TIME(times[i][0], 1000, 0, 32, impl[i].u32toa(buf, x));
TIME(times[i][1], 1000, 1, 32, impl[i].i32toa(buf, x));
TIME(times[i][2], 1000, 0, 64, impl[i].u64toa(buf, x));
TIME(times[i][3], 1000, 1, 64, impl[i].i64toa(buf, x));
}
}
}
}
}
for (int rep = 0; rep < 10; rep++) {
for (size_t i = 0; i < countof(impl1); i++) {
if (impl1[i].enabled & enabled) {
numvariant1++;
#ifdef TEST_SNPRINTF
if (strstr(impl[i].name, "snprintf")) { // avoid function call overhead
#ifdef PRIb32
if (bases & (1ULL << 1)) {
unsigned base = 2;
TIME(times1[i][0][2], 1000, 0, 32, snprintf(buf, 33, "%"PRIb32, x));
TIME(times1[i][1][base], 1000, 1, 32, impl1[i].i32toa_radix(buf, x, base));
TIME(times1[i][2][2], 1000, 0, 64, snprintf(buf, 65, "%"PRIb64, x));
TIME(times1[i][3][base], 1000, 1, 64, impl1[i].i64toa_radix(buf, x, base));
}
#endif
if (bases & (1ULL << 8)) {
unsigned base = 8;
TIME(times1[i][0][8], 1000, 0, 32, snprintf(buf, 33, "%"PRIo32, x));
TIME(times1[i][1][base], 1000, 1, 32, impl1[i].i32toa_radix(buf, x, base));
TIME(times1[i][2][8], 1000, 0, 64, snprintf(buf, 65, "%"PRIo64, x));
TIME(times1[i][3][base], 1000, 1, 64, impl1[i].i64toa_radix(buf, x, base));
}
if (bases & (1ULL << 10)) {
unsigned base = 10;
TIME(times1[i][0][10], 1000, 0, 32, snprintf(buf, 33, "%"PRIu32, x));
TIME(times1[i][1][10], 1000, 1, 32, snprintf(buf, 34, "%"PRIi32, x));
TIME(times1[i][2][10], 1000, 0, 64, snprintf(buf, 64, "%"PRIu64, x));
TIME(times1[i][3][10], 1000, 1, 64, snprintf(buf, 65, "%"PRIi64, x));
}
if (bases & (1ULL << 16)) {
unsigned base = 16;
TIME(times1[i][0][16], 1000, 0, 32, snprintf(buf, 33, "%"PRIx32, x));
TIME(times1[i][1][base], 1000, 1, 32, impl1[i].i32toa_radix(buf, x, base));
TIME(times1[i][2][16], 1000, 0, 64, snprintf(buf, 65, "%"PRIx64, x));
TIME(times1[i][3][base], 1000, 1, 64, impl1[i].i64toa_radix(buf, x, base));
}
} else
#endif
{
for (unsigned base = 2; base <= 36; base++) {
if (bases & (1ULL << base)) {
TIME(times1[i][0][base], 1000, 0, 32, impl1[i].u32toa_radix(buf, x, base));
TIME(times1[i][1][base], 1000, 1, 32, impl1[i].i32toa_radix(buf, x, base));
TIME(times1[i][2][base], 1000, 0, 64, impl1[i].u64toa_radix(buf, x, base));
TIME(times1[i][3][base], 1000, 1, 64, impl1[i].i64toa_radix(buf, x, base));
}
}
}
}
}
}
if (numvariant) {
printf("%13s %10s %12s %12s %12s\n",
"variant", "u32toa", "i32toa", "u64toa", "i64toa");
for (size_t i = 0; i < countof(impl); i++) {
if (impl[i].enabled & enabled) {
printf("%13s", impl[i].name);
for (int j = 0; j < 4; j++)
printf(" %6.2fns ", times[i][j] * (1e9 / 1000 / 64 / CLOCKS_PER_SEC));
printf("\n");
}
}
}
if (numvariant1) {
printf("%9s rx %12s %12s %12s %12s\n",
"variant", "u32toa_radix", "i32toa_radix", "u64toa_radix", "i64toa_radix");
for (size_t i = 0; i < countof(impl1); i++) {
int numbases = 0;
for (unsigned base = 2; base <= 36; base++) {
if (bases & (1ULL << base)) {
if (times1[i][0][base]) {
numbases++;
for (int j = 0; j < 4; j++)
times1[i][j][1] += times1[i][j][base];
if (verbose) {
printf("%9s %-3d", impl1[i].name, base);
for (int j = 0; j < 4; j++) {
printf(" %6.2fns ", times1[i][j][base] * (1e9 / 1000 / 64 / CLOCKS_PER_SEC));
}
printf("\n");
}
}
}
}
if (average && numbases) {
printf("%9s avg", impl1[i].name);
for (int j = 0; j < 4; j++) {
printf(" %6.2fns ", times1[i][j][1] * (1e9 / 1000 / 64 / numbases / CLOCKS_PER_SEC));
}
printf("\n");
}
}
}
return 0;
}